Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads

Autores
Pérez, Ignacio Augusto; Vaknin Ben Porath, Dana; la Rocca, Cristian Ernesto; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; Havlin, Shlomo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cascading failures are catastrophic processes that can destroy the functionality of a system, thus,understanding their development in real infrastructures is of vital importance. This may lead to abetter management of everyday complex infrastructures relevant to modern societies, e.g., electrical power grids, communication and traffic networks. In this paper we examine the Motter–Lai model (2002 Phys. Rev. E 66 065102) of cascading failures induced by overloads in both isotropic and anisotropic spatial networks, generated by placing nodes in a square lattice and using various distributions of link lengths and angles. Anisotropy has not been earlier considered in the Motter–Lai model and is a real feature that may affect the cascading failures. This could reflect the existence of a preferred direction in which a given attribute of the system manifests, such as power lines that follow a city built parallel to the coast. We analyze the evolution of the cascading failures for systems with different strengths of anisotropy and show that the anisotropy causes a greater spread of damage along the preferential direction of links. We identify the critical linear size, lc , for a square shaped localized attack, which satisfies with high probability that above l c the cascading disrupts the giant component of functional nodes, while below lc the damage does not spread. We find that, for networks with any characteristic link length, their robustness decreases with the strength of the anisotropy. We show that the value of lc is finite and independent of the system size (for large systems), both for isotropic and anisotropic networks. Thus, in contrast to random attacks, where the critical fraction of nodes that survive the initial attack, pc , is usually below 1, here pc = 1. Note that the analogy to pc = 1 is also found for localized attacks in interdependent spatial networks (Berezin et al 2015 Sci. Rep. 5 8934). Finally, we measure the final distribution of functional cluster sizes and find a power-law behavior, with exponents similar to regular percolation. This indicates that, after the cascade which destroys the giant component, the system is at a percolation critical point. Additionally, we observe a crossover in the value of the distribution exponent, from critical percolation in a two-dimensional lattice for strong spatial embedding, to mean-field percolation for weak embedding.
Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Vaknin Ben Porath, Dana. Bar-Ilan University; Israel
Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Buldyrev, Sergey V.. Yeshiva University; Estados Unidos
Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Havlin, Shlomo. Bar Ilan University; Israel
Materia
CASCADING FAILURES
COMPLEX NETWORKS
ANISOTROPY
OVERLOADS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213189

id CONICETDig_7cae5a7727a9c08f84bdd65ec411f7a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/213189
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloadsPérez, Ignacio AugustoVaknin Ben Porath, Danala Rocca, Cristian ErnestoBuldyrev, Sergey V.Braunstein, Lidia AdrianaHavlin, ShlomoCASCADING FAILURESCOMPLEX NETWORKSANISOTROPYOVERLOADShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Cascading failures are catastrophic processes that can destroy the functionality of a system, thus,understanding their development in real infrastructures is of vital importance. This may lead to abetter management of everyday complex infrastructures relevant to modern societies, e.g., electrical power grids, communication and traffic networks. In this paper we examine the Motter–Lai model (2002 Phys. Rev. E 66 065102) of cascading failures induced by overloads in both isotropic and anisotropic spatial networks, generated by placing nodes in a square lattice and using various distributions of link lengths and angles. Anisotropy has not been earlier considered in the Motter–Lai model and is a real feature that may affect the cascading failures. This could reflect the existence of a preferred direction in which a given attribute of the system manifests, such as power lines that follow a city built parallel to the coast. We analyze the evolution of the cascading failures for systems with different strengths of anisotropy and show that the anisotropy causes a greater spread of damage along the preferential direction of links. We identify the critical linear size, lc , for a square shaped localized attack, which satisfies with high probability that above l c the cascading disrupts the giant component of functional nodes, while below lc the damage does not spread. We find that, for networks with any characteristic link length, their robustness decreases with the strength of the anisotropy. We show that the value of lc is finite and independent of the system size (for large systems), both for isotropic and anisotropic networks. Thus, in contrast to random attacks, where the critical fraction of nodes that survive the initial attack, pc , is usually below 1, here pc = 1. Note that the analogy to pc = 1 is also found for localized attacks in interdependent spatial networks (Berezin et al 2015 Sci. Rep. 5 8934). Finally, we measure the final distribution of functional cluster sizes and find a power-law behavior, with exponents similar to regular percolation. This indicates that, after the cascade which destroys the giant component, the system is at a percolation critical point. Additionally, we observe a crossover in the value of the distribution exponent, from critical percolation in a two-dimensional lattice for strong spatial embedding, to mean-field percolation for weak embedding.Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Vaknin Ben Porath, Dana. Bar-Ilan University; IsraelFil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Buldyrev, Sergey V.. Yeshiva University; Estados UnidosFil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Havlin, Shlomo. Bar Ilan University; IsraelIOP Publishing2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213189Pérez, Ignacio Augusto; Vaknin Ben Porath, Dana; la Rocca, Cristian Ernesto; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; et al.; Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads; IOP Publishing; New Journal of Physics; 24; 4-2022; 43045-430451367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ac652einfo:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ac652einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:48Zoai:ri.conicet.gov.ar:11336/213189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:49.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
title Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
spellingShingle Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
Pérez, Ignacio Augusto
CASCADING FAILURES
COMPLEX NETWORKS
ANISOTROPY
OVERLOADS
title_short Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
title_full Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
title_fullStr Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
title_full_unstemmed Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
title_sort Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads
dc.creator.none.fl_str_mv Pérez, Ignacio Augusto
Vaknin Ben Porath, Dana
la Rocca, Cristian Ernesto
Buldyrev, Sergey V.
Braunstein, Lidia Adriana
Havlin, Shlomo
author Pérez, Ignacio Augusto
author_facet Pérez, Ignacio Augusto
Vaknin Ben Porath, Dana
la Rocca, Cristian Ernesto
Buldyrev, Sergey V.
Braunstein, Lidia Adriana
Havlin, Shlomo
author_role author
author2 Vaknin Ben Porath, Dana
la Rocca, Cristian Ernesto
Buldyrev, Sergey V.
Braunstein, Lidia Adriana
Havlin, Shlomo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv CASCADING FAILURES
COMPLEX NETWORKS
ANISOTROPY
OVERLOADS
topic CASCADING FAILURES
COMPLEX NETWORKS
ANISOTROPY
OVERLOADS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Cascading failures are catastrophic processes that can destroy the functionality of a system, thus,understanding their development in real infrastructures is of vital importance. This may lead to abetter management of everyday complex infrastructures relevant to modern societies, e.g., electrical power grids, communication and traffic networks. In this paper we examine the Motter–Lai model (2002 Phys. Rev. E 66 065102) of cascading failures induced by overloads in both isotropic and anisotropic spatial networks, generated by placing nodes in a square lattice and using various distributions of link lengths and angles. Anisotropy has not been earlier considered in the Motter–Lai model and is a real feature that may affect the cascading failures. This could reflect the existence of a preferred direction in which a given attribute of the system manifests, such as power lines that follow a city built parallel to the coast. We analyze the evolution of the cascading failures for systems with different strengths of anisotropy and show that the anisotropy causes a greater spread of damage along the preferential direction of links. We identify the critical linear size, lc , for a square shaped localized attack, which satisfies with high probability that above l c the cascading disrupts the giant component of functional nodes, while below lc the damage does not spread. We find that, for networks with any characteristic link length, their robustness decreases with the strength of the anisotropy. We show that the value of lc is finite and independent of the system size (for large systems), both for isotropic and anisotropic networks. Thus, in contrast to random attacks, where the critical fraction of nodes that survive the initial attack, pc , is usually below 1, here pc = 1. Note that the analogy to pc = 1 is also found for localized attacks in interdependent spatial networks (Berezin et al 2015 Sci. Rep. 5 8934). Finally, we measure the final distribution of functional cluster sizes and find a power-law behavior, with exponents similar to regular percolation. This indicates that, after the cascade which destroys the giant component, the system is at a percolation critical point. Additionally, we observe a crossover in the value of the distribution exponent, from critical percolation in a two-dimensional lattice for strong spatial embedding, to mean-field percolation for weak embedding.
Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Vaknin Ben Porath, Dana. Bar-Ilan University; Israel
Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Buldyrev, Sergey V.. Yeshiva University; Estados Unidos
Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Havlin, Shlomo. Bar Ilan University; Israel
description Cascading failures are catastrophic processes that can destroy the functionality of a system, thus,understanding their development in real infrastructures is of vital importance. This may lead to abetter management of everyday complex infrastructures relevant to modern societies, e.g., electrical power grids, communication and traffic networks. In this paper we examine the Motter–Lai model (2002 Phys. Rev. E 66 065102) of cascading failures induced by overloads in both isotropic and anisotropic spatial networks, generated by placing nodes in a square lattice and using various distributions of link lengths and angles. Anisotropy has not been earlier considered in the Motter–Lai model and is a real feature that may affect the cascading failures. This could reflect the existence of a preferred direction in which a given attribute of the system manifests, such as power lines that follow a city built parallel to the coast. We analyze the evolution of the cascading failures for systems with different strengths of anisotropy and show that the anisotropy causes a greater spread of damage along the preferential direction of links. We identify the critical linear size, lc , for a square shaped localized attack, which satisfies with high probability that above l c the cascading disrupts the giant component of functional nodes, while below lc the damage does not spread. We find that, for networks with any characteristic link length, their robustness decreases with the strength of the anisotropy. We show that the value of lc is finite and independent of the system size (for large systems), both for isotropic and anisotropic networks. Thus, in contrast to random attacks, where the critical fraction of nodes that survive the initial attack, pc , is usually below 1, here pc = 1. Note that the analogy to pc = 1 is also found for localized attacks in interdependent spatial networks (Berezin et al 2015 Sci. Rep. 5 8934). Finally, we measure the final distribution of functional cluster sizes and find a power-law behavior, with exponents similar to regular percolation. This indicates that, after the cascade which destroys the giant component, the system is at a percolation critical point. Additionally, we observe a crossover in the value of the distribution exponent, from critical percolation in a two-dimensional lattice for strong spatial embedding, to mean-field percolation for weak embedding.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213189
Pérez, Ignacio Augusto; Vaknin Ben Porath, Dana; la Rocca, Cristian Ernesto; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; et al.; Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads; IOP Publishing; New Journal of Physics; 24; 4-2022; 43045-43045
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213189
identifier_str_mv Pérez, Ignacio Augusto; Vaknin Ben Porath, Dana; la Rocca, Cristian Ernesto; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; et al.; Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads; IOP Publishing; New Journal of Physics; 24; 4-2022; 43045-43045
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ac652e
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ac652e
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613959472119808
score 13.070432