Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies
- Autores
- Godin, Robert; Palacios, Rodrigo Emiliano; Cosa, Gonzalo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The optoelectronic properties of conjugated polymers and conjugated polyelectrolytes (CPEs) depend on their chain conformation and packing. Correlations between emission color, charge mobility, and extent of aggregation in these materials have been previously established from bulk studies. Here we describe the preparation of stable nanoparticle suspensions of the CPE poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) where changes in the solvent composition enable tuning their emission spectra and quantum yield. By employing a newly developed color-sensitive single-molecule spectroelectrochemistry (SMS-EC) technique, the effect of chain conformation on the optoelectronic properties of MPS-PPV nanoparticles is monitored at the single particle level. Within a single particle the photoluminescence and redox response is chromatically correlated reflecting on the differing contributions that coiled and deaggregated vs extended and packed segments have on their optoelectronic properties. We also observe a heterogeneous response among nanoparticles to externally applied electrochemical potentials, which further correlates with their emission color (chain packing). We rationalize our observations on differential charge injection, energy and charge transport, and ion migration as a consequence of chain conformation, packing effects, and the presence of electrochemically reducible quenching sites. Our work provides a way to unravel the intrinsic heterogeneity of CPE materials to better understand the relationship between chain conformation and optoelectronic properties.
Fil: Godin, Robert. McGill University; Canadá
Fil: Palacios, Rodrigo Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Cosa, Gonzalo. McGill University; Canadá - Materia
-
CONJUGATED POLYMERS
CHARGE MOBILITY
SINGLE MOLECULE SPECTROELECTROCHEMISTRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61530
Ver los metadatos del registro completo
id |
CONICETDig_a1ea05a512414a1c8faef5b404fd0918 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61530 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry StudiesGodin, RobertPalacios, Rodrigo EmilianoCosa, GonzaloCONJUGATED POLYMERSCHARGE MOBILITYSINGLE MOLECULE SPECTROELECTROCHEMISTRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The optoelectronic properties of conjugated polymers and conjugated polyelectrolytes (CPEs) depend on their chain conformation and packing. Correlations between emission color, charge mobility, and extent of aggregation in these materials have been previously established from bulk studies. Here we describe the preparation of stable nanoparticle suspensions of the CPE poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) where changes in the solvent composition enable tuning their emission spectra and quantum yield. By employing a newly developed color-sensitive single-molecule spectroelectrochemistry (SMS-EC) technique, the effect of chain conformation on the optoelectronic properties of MPS-PPV nanoparticles is monitored at the single particle level. Within a single particle the photoluminescence and redox response is chromatically correlated reflecting on the differing contributions that coiled and deaggregated vs extended and packed segments have on their optoelectronic properties. We also observe a heterogeneous response among nanoparticles to externally applied electrochemical potentials, which further correlates with their emission color (chain packing). We rationalize our observations on differential charge injection, energy and charge transport, and ion migration as a consequence of chain conformation, packing effects, and the presence of electrochemically reducible quenching sites. Our work provides a way to unravel the intrinsic heterogeneity of CPE materials to better understand the relationship between chain conformation and optoelectronic properties.Fil: Godin, Robert. McGill University; CanadáFil: Palacios, Rodrigo Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Cosa, Gonzalo. McGill University; CanadáAmerican Chemical Society2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61530Godin, Robert; Palacios, Rodrigo Emiliano; Cosa, Gonzalo; Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies; American Chemical Society; Journal of Physical Chemistry C; 119; 23; 6-2015; 12875-128861932-74471932-7455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b03491info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b03491info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:24Zoai:ri.conicet.gov.ar:11336/61530instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:24.225CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
title |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
spellingShingle |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies Godin, Robert CONJUGATED POLYMERS CHARGE MOBILITY SINGLE MOLECULE SPECTROELECTROCHEMISTRY |
title_short |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
title_full |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
title_fullStr |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
title_full_unstemmed |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
title_sort |
Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies |
dc.creator.none.fl_str_mv |
Godin, Robert Palacios, Rodrigo Emiliano Cosa, Gonzalo |
author |
Godin, Robert |
author_facet |
Godin, Robert Palacios, Rodrigo Emiliano Cosa, Gonzalo |
author_role |
author |
author2 |
Palacios, Rodrigo Emiliano Cosa, Gonzalo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CONJUGATED POLYMERS CHARGE MOBILITY SINGLE MOLECULE SPECTROELECTROCHEMISTRY |
topic |
CONJUGATED POLYMERS CHARGE MOBILITY SINGLE MOLECULE SPECTROELECTROCHEMISTRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The optoelectronic properties of conjugated polymers and conjugated polyelectrolytes (CPEs) depend on their chain conformation and packing. Correlations between emission color, charge mobility, and extent of aggregation in these materials have been previously established from bulk studies. Here we describe the preparation of stable nanoparticle suspensions of the CPE poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) where changes in the solvent composition enable tuning their emission spectra and quantum yield. By employing a newly developed color-sensitive single-molecule spectroelectrochemistry (SMS-EC) technique, the effect of chain conformation on the optoelectronic properties of MPS-PPV nanoparticles is monitored at the single particle level. Within a single particle the photoluminescence and redox response is chromatically correlated reflecting on the differing contributions that coiled and deaggregated vs extended and packed segments have on their optoelectronic properties. We also observe a heterogeneous response among nanoparticles to externally applied electrochemical potentials, which further correlates with their emission color (chain packing). We rationalize our observations on differential charge injection, energy and charge transport, and ion migration as a consequence of chain conformation, packing effects, and the presence of electrochemically reducible quenching sites. Our work provides a way to unravel the intrinsic heterogeneity of CPE materials to better understand the relationship between chain conformation and optoelectronic properties. Fil: Godin, Robert. McGill University; Canadá Fil: Palacios, Rodrigo Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Cosa, Gonzalo. McGill University; Canadá |
description |
The optoelectronic properties of conjugated polymers and conjugated polyelectrolytes (CPEs) depend on their chain conformation and packing. Correlations between emission color, charge mobility, and extent of aggregation in these materials have been previously established from bulk studies. Here we describe the preparation of stable nanoparticle suspensions of the CPE poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) where changes in the solvent composition enable tuning their emission spectra and quantum yield. By employing a newly developed color-sensitive single-molecule spectroelectrochemistry (SMS-EC) technique, the effect of chain conformation on the optoelectronic properties of MPS-PPV nanoparticles is monitored at the single particle level. Within a single particle the photoluminescence and redox response is chromatically correlated reflecting on the differing contributions that coiled and deaggregated vs extended and packed segments have on their optoelectronic properties. We also observe a heterogeneous response among nanoparticles to externally applied electrochemical potentials, which further correlates with their emission color (chain packing). We rationalize our observations on differential charge injection, energy and charge transport, and ion migration as a consequence of chain conformation, packing effects, and the presence of electrochemically reducible quenching sites. Our work provides a way to unravel the intrinsic heterogeneity of CPE materials to better understand the relationship between chain conformation and optoelectronic properties. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61530 Godin, Robert; Palacios, Rodrigo Emiliano; Cosa, Gonzalo; Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies; American Chemical Society; Journal of Physical Chemistry C; 119; 23; 6-2015; 12875-12886 1932-7447 1932-7455 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61530 |
identifier_str_mv |
Godin, Robert; Palacios, Rodrigo Emiliano; Cosa, Gonzalo; Heterogeneous Charge Mobility in Individual Conjugated Polyelectrolyte Nanoparticles Revealed by Two-Color Single Particle Spectroelectrochemistry Studies; American Chemical Society; Journal of Physical Chemistry C; 119; 23; 6-2015; 12875-12886 1932-7447 1932-7455 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b03491 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b03491 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614030347468800 |
score |
13.070432 |