Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
- Autores
- Mercader, Andrew Gustavo; Goodarzi, Mohammad; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules. © 2010 John Wiley & Sons A/S.
Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina
Fil: Goodarzi, Mohammad. Islamic Azad University; Iraq
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
ENHANCED REPLACEMENT METHOD
PHARMACEUTICAL COMPOUNDS
PKA
QSPR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67781
Ver los metadatos del registro completo
id |
CONICETDig_a180ba1ea69e3011f2f367a28baf3fbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67781 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compoundsMercader, Andrew GustavoGoodarzi, MohammadDuchowicz, Pablo RománFernández, Francisco MarceloCastro, Eduardo AlbertoENHANCED REPLACEMENT METHODPHARMACEUTICAL COMPOUNDSPKAQSPRhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules. © 2010 John Wiley & Sons A/S.Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Goodarzi, Mohammad. Islamic Azad University; IraqFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaWiley Blackwell Publishing, Inc2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67781Mercader, Andrew Gustavo; Goodarzi, Mohammad; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds; Wiley Blackwell Publishing, Inc; Chemical Biology & Drug Design; 76; 5; 11-2010; 433-4401747-0277CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1747-0285.2010.01033.xinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1747-0285.2010.01033.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:29Zoai:ri.conicet.gov.ar:11336/67781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:29.527CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
title |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
spellingShingle |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds Mercader, Andrew Gustavo ENHANCED REPLACEMENT METHOD PHARMACEUTICAL COMPOUNDS PKA QSPR |
title_short |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
title_full |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
title_fullStr |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
title_full_unstemmed |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
title_sort |
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds |
dc.creator.none.fl_str_mv |
Mercader, Andrew Gustavo Goodarzi, Mohammad Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author |
Mercader, Andrew Gustavo |
author_facet |
Mercader, Andrew Gustavo Goodarzi, Mohammad Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author_role |
author |
author2 |
Goodarzi, Mohammad Duchowicz, Pablo Román Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ENHANCED REPLACEMENT METHOD PHARMACEUTICAL COMPOUNDS PKA QSPR |
topic |
ENHANCED REPLACEMENT METHOD PHARMACEUTICAL COMPOUNDS PKA QSPR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules. © 2010 John Wiley & Sons A/S. Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina Fil: Goodarzi, Mohammad. Islamic Azad University; Iraq Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules. © 2010 John Wiley & Sons A/S. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67781 Mercader, Andrew Gustavo; Goodarzi, Mohammad; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds; Wiley Blackwell Publishing, Inc; Chemical Biology & Drug Design; 76; 5; 11-2010; 433-440 1747-0277 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67781 |
identifier_str_mv |
Mercader, Andrew Gustavo; Goodarzi, Mohammad; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds; Wiley Blackwell Publishing, Inc; Chemical Biology & Drug Design; 76; 5; 11-2010; 433-440 1747-0277 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1747-0285.2010.01033.x info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1747-0285.2010.01033.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613338547355648 |
score |
13.069144 |