V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion

Autores
Zhang, Jingming; Lanuza, Guillermo Marcos; Britz, Olivier; Wan, Zhi; Siembad, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limbdriven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and displaymarked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.
Fil: Zhang, Jingming. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Lanuza, Guillermo Marcos. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Britz, Olivier. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Wan, Zhi. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados Unidos
Fil: Siembad, Valerie C.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados Unidos
Fil: Zhang, Ying. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos. Dalhousie University. Department of Anatomy and Neurobiology; Canadá
Fil: Velasquez, Tomoko. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Alvarez, Francisco J.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados Unidos. Emory University. Department of Physiology; Estados Unidos
Fil: Frank, Eric. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados Unidos
Fil: Goulding, Martyn. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Materia
Motor System
Spinal Reflex
Interneuron
Cpg
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8355

id CONICETDig_a0f8f8d8f273ab3a9bf15ccf3b9c4e40
oai_identifier_str oai:ri.conicet.gov.ar:11336/8355
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed LocomotionZhang, JingmingLanuza, Guillermo MarcosBritz, OlivierWan, ZhiSiembad, Valerie C.Zhang, YingVelasquez, TomokoAlvarez, Francisco J.Frank, EricGoulding, MartynMotor SystemSpinal ReflexInterneuronCpghttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limbdriven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and displaymarked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.Fil: Zhang, Jingming. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados UnidosFil: Lanuza, Guillermo Marcos. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados UnidosFil: Britz, Olivier. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados UnidosFil: Wan, Zhi. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados UnidosFil: Siembad, Valerie C.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados UnidosFil: Zhang, Ying. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos. Dalhousie University. Department of Anatomy and Neurobiology; CanadáFil: Velasquez, Tomoko. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados UnidosFil: Alvarez, Francisco J.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados Unidos. Emory University. Department of Physiology; Estados UnidosFil: Frank, Eric. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados UnidosFil: Goulding, Martyn. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados UnidosElsevier2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8355Zhang, Jingming; Lanuza, Guillermo Marcos; Britz, Olivier; Wan, Zhi; Siembad, Valerie C.; et al.; V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion; Elsevier; Neuron; 82; 1; 4-2014; 138-1500896-6273enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuron.2014.02.013info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096991/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:23Zoai:ri.conicet.gov.ar:11336/8355instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:23.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
title V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
spellingShingle V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
Zhang, Jingming
Motor System
Spinal Reflex
Interneuron
Cpg
title_short V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
title_full V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
title_fullStr V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
title_full_unstemmed V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
title_sort V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion
dc.creator.none.fl_str_mv Zhang, Jingming
Lanuza, Guillermo Marcos
Britz, Olivier
Wan, Zhi
Siembad, Valerie C.
Zhang, Ying
Velasquez, Tomoko
Alvarez, Francisco J.
Frank, Eric
Goulding, Martyn
author Zhang, Jingming
author_facet Zhang, Jingming
Lanuza, Guillermo Marcos
Britz, Olivier
Wan, Zhi
Siembad, Valerie C.
Zhang, Ying
Velasquez, Tomoko
Alvarez, Francisco J.
Frank, Eric
Goulding, Martyn
author_role author
author2 Lanuza, Guillermo Marcos
Britz, Olivier
Wan, Zhi
Siembad, Valerie C.
Zhang, Ying
Velasquez, Tomoko
Alvarez, Francisco J.
Frank, Eric
Goulding, Martyn
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Motor System
Spinal Reflex
Interneuron
Cpg
topic Motor System
Spinal Reflex
Interneuron
Cpg
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limbdriven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and displaymarked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.
Fil: Zhang, Jingming. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Lanuza, Guillermo Marcos. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Britz, Olivier. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Wan, Zhi. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados Unidos
Fil: Siembad, Valerie C.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados Unidos
Fil: Zhang, Ying. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos. Dalhousie University. Department of Anatomy and Neurobiology; Canadá
Fil: Velasquez, Tomoko. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
Fil: Alvarez, Francisco J.. Wright State University. Department of Neurosciences, Cell Biology, and Physiology; Estados Unidos. Emory University. Department of Physiology; Estados Unidos
Fil: Frank, Eric. Tufts University School of Medicine. Department of Molecular Physiology and Pharmacology; Estados Unidos
Fil: Goulding, Martyn. Salk Institute for Biological Studies. Molecular Neurobiology Laboratory; Estados Unidos
description Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limbdriven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and displaymarked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8355
Zhang, Jingming; Lanuza, Guillermo Marcos; Britz, Olivier; Wan, Zhi; Siembad, Valerie C.; et al.; V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion; Elsevier; Neuron; 82; 1; 4-2014; 138-150
0896-6273
url http://hdl.handle.net/11336/8355
identifier_str_mv Zhang, Jingming; Lanuza, Guillermo Marcos; Britz, Olivier; Wan, Zhi; Siembad, Valerie C.; et al.; V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion; Elsevier; Neuron; 82; 1; 4-2014; 138-150
0896-6273
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuron.2014.02.013
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096991/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268599541039104
score 13.13397