Glasses in coarse-grained micrometeorites
- Autores
- Varela, Maria Eugenia; Kurat, G.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Micrometeorites (MMs, interplanetary dust particles with 25 - 500 μm diameters) carry the main mass of extraterrestrial matter that is captured by Earth. The coarse-grained MMs mainly consist of olivine aggregates, which - as their counterparts in CC chondrites - also contain pyroxenes and glass. We studied clear glasses in four coarse-grained crystalline MMs (10M12, M92-6b, AM9, and Mc7-10), which were collected from the ice at Cap Prudhomme, Antarctica. Previous studies of glasses (e.g., glass inclusions trapped in olivine and clear mesostasis glass) in carbonaceous and ordinary chondrites showed that these phases could keep memory of the physical-chemical conditions to which extraterrestrial matter was exposed. Here we compare the chemical compositions of MM glasses and glasses from CM chondrites with that in experimentally heated objects from the Allende CV chondrite and with glasses from cometary particles. Our results show that MMs were heated to variable degrees (during entry through the terrestrial atmosphere), which caused a range from very little chemical modification of the glass to total melting of the precursor object. Such modifications include dissolution of minerals in the melted glass precursor and some loss of volatile alkali elements. The chemical composition of all precursor glasses in the MMs investigated is not primitive such as glasses in CM and CR chondrite objects. It shows signs of pre-terrestrial chemical modification, e.g., metasomatic enrichments in Na and Fe2+ presumably in the solar nebula. Glasses of MMs heated to very low degree have a chemical composition indistinguishable from that of glasses in comet Wild 2 particles; giving additional evidence that interplanetary dust (e.g., Antarctic MMs) possibly represents samples from comets. © 2009 Elsevier B.V. All rights reserved.
Fil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; Argentina
Fil: Kurat, G.. Universidad de Viena; Austria - Materia
-
CARBONACEOUS CHONDRITES
GLASSES
GLASSES FROM COMETARY PARTICLES
MICROMETEORITES
NEBULAR METASOMATIC MODIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212058
Ver los metadatos del registro completo
id |
CONICETDig_a0b0006580468fa36e3c1f79a9beae1f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212058 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Glasses in coarse-grained micrometeoritesVarela, Maria EugeniaKurat, G.CARBONACEOUS CHONDRITESGLASSESGLASSES FROM COMETARY PARTICLESMICROMETEORITESNEBULAR METASOMATIC MODIFICATIONhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Micrometeorites (MMs, interplanetary dust particles with 25 - 500 μm diameters) carry the main mass of extraterrestrial matter that is captured by Earth. The coarse-grained MMs mainly consist of olivine aggregates, which - as their counterparts in CC chondrites - also contain pyroxenes and glass. We studied clear glasses in four coarse-grained crystalline MMs (10M12, M92-6b, AM9, and Mc7-10), which were collected from the ice at Cap Prudhomme, Antarctica. Previous studies of glasses (e.g., glass inclusions trapped in olivine and clear mesostasis glass) in carbonaceous and ordinary chondrites showed that these phases could keep memory of the physical-chemical conditions to which extraterrestrial matter was exposed. Here we compare the chemical compositions of MM glasses and glasses from CM chondrites with that in experimentally heated objects from the Allende CV chondrite and with glasses from cometary particles. Our results show that MMs were heated to variable degrees (during entry through the terrestrial atmosphere), which caused a range from very little chemical modification of the glass to total melting of the precursor object. Such modifications include dissolution of minerals in the melted glass precursor and some loss of volatile alkali elements. The chemical composition of all precursor glasses in the MMs investigated is not primitive such as glasses in CM and CR chondrite objects. It shows signs of pre-terrestrial chemical modification, e.g., metasomatic enrichments in Na and Fe2+ presumably in the solar nebula. Glasses of MMs heated to very low degree have a chemical composition indistinguishable from that of glasses in comet Wild 2 particles; giving additional evidence that interplanetary dust (e.g., Antarctic MMs) possibly represents samples from comets. © 2009 Elsevier B.V. All rights reserved.Fil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Kurat, G.. Universidad de Viena; AustriaElsevier Science2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212058Varela, Maria Eugenia; Kurat, G.; Glasses in coarse-grained micrometeorites; Elsevier Science; Earth and Planetary Science Letters; 284; 1-2; 6-2009; 208-2180012-821XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X0900257Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2009.04.030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:41Zoai:ri.conicet.gov.ar:11336/212058instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:41.722CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Glasses in coarse-grained micrometeorites |
title |
Glasses in coarse-grained micrometeorites |
spellingShingle |
Glasses in coarse-grained micrometeorites Varela, Maria Eugenia CARBONACEOUS CHONDRITES GLASSES GLASSES FROM COMETARY PARTICLES MICROMETEORITES NEBULAR METASOMATIC MODIFICATION |
title_short |
Glasses in coarse-grained micrometeorites |
title_full |
Glasses in coarse-grained micrometeorites |
title_fullStr |
Glasses in coarse-grained micrometeorites |
title_full_unstemmed |
Glasses in coarse-grained micrometeorites |
title_sort |
Glasses in coarse-grained micrometeorites |
dc.creator.none.fl_str_mv |
Varela, Maria Eugenia Kurat, G. |
author |
Varela, Maria Eugenia |
author_facet |
Varela, Maria Eugenia Kurat, G. |
author_role |
author |
author2 |
Kurat, G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
CARBONACEOUS CHONDRITES GLASSES GLASSES FROM COMETARY PARTICLES MICROMETEORITES NEBULAR METASOMATIC MODIFICATION |
topic |
CARBONACEOUS CHONDRITES GLASSES GLASSES FROM COMETARY PARTICLES MICROMETEORITES NEBULAR METASOMATIC MODIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Micrometeorites (MMs, interplanetary dust particles with 25 - 500 μm diameters) carry the main mass of extraterrestrial matter that is captured by Earth. The coarse-grained MMs mainly consist of olivine aggregates, which - as their counterparts in CC chondrites - also contain pyroxenes and glass. We studied clear glasses in four coarse-grained crystalline MMs (10M12, M92-6b, AM9, and Mc7-10), which were collected from the ice at Cap Prudhomme, Antarctica. Previous studies of glasses (e.g., glass inclusions trapped in olivine and clear mesostasis glass) in carbonaceous and ordinary chondrites showed that these phases could keep memory of the physical-chemical conditions to which extraterrestrial matter was exposed. Here we compare the chemical compositions of MM glasses and glasses from CM chondrites with that in experimentally heated objects from the Allende CV chondrite and with glasses from cometary particles. Our results show that MMs were heated to variable degrees (during entry through the terrestrial atmosphere), which caused a range from very little chemical modification of the glass to total melting of the precursor object. Such modifications include dissolution of minerals in the melted glass precursor and some loss of volatile alkali elements. The chemical composition of all precursor glasses in the MMs investigated is not primitive such as glasses in CM and CR chondrite objects. It shows signs of pre-terrestrial chemical modification, e.g., metasomatic enrichments in Na and Fe2+ presumably in the solar nebula. Glasses of MMs heated to very low degree have a chemical composition indistinguishable from that of glasses in comet Wild 2 particles; giving additional evidence that interplanetary dust (e.g., Antarctic MMs) possibly represents samples from comets. © 2009 Elsevier B.V. All rights reserved. Fil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; Argentina Fil: Kurat, G.. Universidad de Viena; Austria |
description |
Micrometeorites (MMs, interplanetary dust particles with 25 - 500 μm diameters) carry the main mass of extraterrestrial matter that is captured by Earth. The coarse-grained MMs mainly consist of olivine aggregates, which - as their counterparts in CC chondrites - also contain pyroxenes and glass. We studied clear glasses in four coarse-grained crystalline MMs (10M12, M92-6b, AM9, and Mc7-10), which were collected from the ice at Cap Prudhomme, Antarctica. Previous studies of glasses (e.g., glass inclusions trapped in olivine and clear mesostasis glass) in carbonaceous and ordinary chondrites showed that these phases could keep memory of the physical-chemical conditions to which extraterrestrial matter was exposed. Here we compare the chemical compositions of MM glasses and glasses from CM chondrites with that in experimentally heated objects from the Allende CV chondrite and with glasses from cometary particles. Our results show that MMs were heated to variable degrees (during entry through the terrestrial atmosphere), which caused a range from very little chemical modification of the glass to total melting of the precursor object. Such modifications include dissolution of minerals in the melted glass precursor and some loss of volatile alkali elements. The chemical composition of all precursor glasses in the MMs investigated is not primitive such as glasses in CM and CR chondrite objects. It shows signs of pre-terrestrial chemical modification, e.g., metasomatic enrichments in Na and Fe2+ presumably in the solar nebula. Glasses of MMs heated to very low degree have a chemical composition indistinguishable from that of glasses in comet Wild 2 particles; giving additional evidence that interplanetary dust (e.g., Antarctic MMs) possibly represents samples from comets. © 2009 Elsevier B.V. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212058 Varela, Maria Eugenia; Kurat, G.; Glasses in coarse-grained micrometeorites; Elsevier Science; Earth and Planetary Science Letters; 284; 1-2; 6-2009; 208-218 0012-821X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212058 |
identifier_str_mv |
Varela, Maria Eugenia; Kurat, G.; Glasses in coarse-grained micrometeorites; Elsevier Science; Earth and Planetary Science Letters; 284; 1-2; 6-2009; 208-218 0012-821X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X0900257X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2009.04.030 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614422618701824 |
score |
13.070432 |