Glasses in D'Orbigny angrite

Autores
Varela, Maria Eugenia; Kurat, Gero; Zinner, Ernst; Métrich, Nicole; Brandstaetter, Franz; Ntaflos, Theodoros; Sylvester, Paul
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3–5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe). Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.
Fil: Varela, Maria Eugenia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Kurat, Gero. Naturhistorisches Museum; Austria
Fil: Zinner, Ernst. University of Washington; Estados Unidos
Fil: Métrich, Nicole. Centre National de la Recherche Scientifique; Francia
Fil: Brandstaetter, Franz. Naturhistorisches Museum; Austria
Fil: Ntaflos, Theodoros. Universidad de Viena; Austria
Fil: Sylvester, Paul. Memorial University of Newfoundland; Canadá
Materia
Angrites
Glasses
Condensation
Glass inclusions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214812

id CONICETDig_91ad2b2678b72289a1e7302fd2377218
oai_identifier_str oai:ri.conicet.gov.ar:11336/214812
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Glasses in D'Orbigny angriteVarela, Maria EugeniaKurat, GeroZinner, ErnstMétrich, NicoleBrandstaetter, FranzNtaflos, TheodorosSylvester, PaulAngritesGlassesCondensationGlass inclusionshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3–5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe). Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.Fil: Varela, Maria Eugenia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Kurat, Gero. Naturhistorisches Museum; AustriaFil: Zinner, Ernst. University of Washington; Estados UnidosFil: Métrich, Nicole. Centre National de la Recherche Scientifique; FranciaFil: Brandstaetter, Franz. Naturhistorisches Museum; AustriaFil: Ntaflos, Theodoros. Universidad de Viena; AustriaFil: Sylvester, Paul. Memorial University of Newfoundland; CanadáPergamon-Elsevier Science Ltd2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214812Varela, Maria Eugenia; Kurat, Gero; Zinner, Ernst; Métrich, Nicole; Brandstaetter, Franz; et al.; Glasses in D'Orbigny angrite; Pergamon-Elsevier Science Ltd; Geochimica et Cosmochimica Acta; 67; 24; 12-2003; 5027-50460016-7037CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0016-7037(03)00454-Xinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S001670370300454Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:52Zoai:ri.conicet.gov.ar:11336/214812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:52.586CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Glasses in D'Orbigny angrite
title Glasses in D'Orbigny angrite
spellingShingle Glasses in D'Orbigny angrite
Varela, Maria Eugenia
Angrites
Glasses
Condensation
Glass inclusions
title_short Glasses in D'Orbigny angrite
title_full Glasses in D'Orbigny angrite
title_fullStr Glasses in D'Orbigny angrite
title_full_unstemmed Glasses in D'Orbigny angrite
title_sort Glasses in D'Orbigny angrite
dc.creator.none.fl_str_mv Varela, Maria Eugenia
Kurat, Gero
Zinner, Ernst
Métrich, Nicole
Brandstaetter, Franz
Ntaflos, Theodoros
Sylvester, Paul
author Varela, Maria Eugenia
author_facet Varela, Maria Eugenia
Kurat, Gero
Zinner, Ernst
Métrich, Nicole
Brandstaetter, Franz
Ntaflos, Theodoros
Sylvester, Paul
author_role author
author2 Kurat, Gero
Zinner, Ernst
Métrich, Nicole
Brandstaetter, Franz
Ntaflos, Theodoros
Sylvester, Paul
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Angrites
Glasses
Condensation
Glass inclusions
topic Angrites
Glasses
Condensation
Glass inclusions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3–5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe). Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.
Fil: Varela, Maria Eugenia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Kurat, Gero. Naturhistorisches Museum; Austria
Fil: Zinner, Ernst. University of Washington; Estados Unidos
Fil: Métrich, Nicole. Centre National de la Recherche Scientifique; Francia
Fil: Brandstaetter, Franz. Naturhistorisches Museum; Austria
Fil: Ntaflos, Theodoros. Universidad de Viena; Austria
Fil: Sylvester, Paul. Memorial University of Newfoundland; Canadá
description The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3–5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe). Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214812
Varela, Maria Eugenia; Kurat, Gero; Zinner, Ernst; Métrich, Nicole; Brandstaetter, Franz; et al.; Glasses in D'Orbigny angrite; Pergamon-Elsevier Science Ltd; Geochimica et Cosmochimica Acta; 67; 24; 12-2003; 5027-5046
0016-7037
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214812
identifier_str_mv Varela, Maria Eugenia; Kurat, Gero; Zinner, Ernst; Métrich, Nicole; Brandstaetter, Franz; et al.; Glasses in D'Orbigny angrite; Pergamon-Elsevier Science Ltd; Geochimica et Cosmochimica Acta; 67; 24; 12-2003; 5027-5046
0016-7037
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0016-7037(03)00454-X
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S001670370300454X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614378210459648
score 13.070432