On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes.
- Autores
- Sydes, Daniel; Kler, Pablo Alejandro; Zipfl, P.; Lutz, D.; Bouwes, Hans; Huhn, Carolin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the greatest challenges in multi-channel networks for electromigrative separation techniques is the control of the leakage of sample constituents and band broadening at the channel intersections in microfluidic devices or capillary-chip interfaces, which can be achieved using fixed bias or pullback potentials. These may be implemented as the first separation dimension in a 2D setup, where the electric potential at the interface to the second dimension changes with time. Thus, a dynamic control via on-line potential measurement in combination with a feedback system is needed to control electromigration into the side channels. We here present for the first time a prototype for in-channel potential measurements using a low working current in combination with a Si3N4 passivated Ti/Pt electrode at the intersection of the channels in a microfluidic interface. Exemplarily we chose capillary electrophoresis and isotachophoresis as model applications with constant vs. dynamic potential. Parallel on-chip intersection potential measurements were successfully conducted without disturbing capillary zone electrophoretic and isotachophoretic analysis regarding separation and peak performance of amino acids chosen as model analytes. This was possible due to a Si3N4 passivation layer, but also due to an ad-hoc developed high impedance instrumentation, resulting in a very low measuring electric current. Simulations of the detected isotachophoretic cross-section potential allowed a deeper understanding of the potential development during the separation.
Fil: Sydes, Daniel. Iptc - Karls Eberhardt Universität Tübingen; Alemania
Fil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Zipfl, P.. Fachhochschule Aalen; Alemania
Fil: Lutz, D.. Fachhochschule Aalen; Alemania
Fil: Bouwes, Hans. Ix-factory Gmbh; Alemania
Fil: Huhn, Carolin. Iptc - Karls Eberhardt Universität Tübingen; Alemania - Materia
-
Capacitively Coupled Contactless Conductivity Detection
Capillary Electrophoresis
Dynamic Electric Potential Control
Glass Microfluidic Interface
Isotachophoresis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78626
Ver los metadatos del registro completo
id |
CONICETDig_a0686617e32d0f293cbc03896af4af93 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78626 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes.Sydes, DanielKler, Pablo AlejandroZipfl, P.Lutz, D.Bouwes, HansHuhn, CarolinCapacitively Coupled Contactless Conductivity DetectionCapillary ElectrophoresisDynamic Electric Potential ControlGlass Microfluidic InterfaceIsotachophoresishttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2One of the greatest challenges in multi-channel networks for electromigrative separation techniques is the control of the leakage of sample constituents and band broadening at the channel intersections in microfluidic devices or capillary-chip interfaces, which can be achieved using fixed bias or pullback potentials. These may be implemented as the first separation dimension in a 2D setup, where the electric potential at the interface to the second dimension changes with time. Thus, a dynamic control via on-line potential measurement in combination with a feedback system is needed to control electromigration into the side channels. We here present for the first time a prototype for in-channel potential measurements using a low working current in combination with a Si3N4 passivated Ti/Pt electrode at the intersection of the channels in a microfluidic interface. Exemplarily we chose capillary electrophoresis and isotachophoresis as model applications with constant vs. dynamic potential. Parallel on-chip intersection potential measurements were successfully conducted without disturbing capillary zone electrophoretic and isotachophoretic analysis regarding separation and peak performance of amino acids chosen as model analytes. This was possible due to a Si3N4 passivation layer, but also due to an ad-hoc developed high impedance instrumentation, resulting in a very low measuring electric current. Simulations of the detected isotachophoretic cross-section potential allowed a deeper understanding of the potential development during the separation.Fil: Sydes, Daniel. Iptc - Karls Eberhardt Universität Tübingen; AlemaniaFil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Zipfl, P.. Fachhochschule Aalen; AlemaniaFil: Lutz, D.. Fachhochschule Aalen; AlemaniaFil: Bouwes, Hans. Ix-factory Gmbh; AlemaniaFil: Huhn, Carolin. Iptc - Karls Eberhardt Universität Tübingen; AlemaniaElsevier Science Sa2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78626Sydes, Daniel; Kler, Pablo Alejandro; Zipfl, P.; Lutz, D.; Bouwes, Hans; et al.; On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes.; Elsevier Science Sa; Sensors and Actuators B: Chemical; 240; 3-2017; 330-3370925-4005CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2016.08.152info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:36Zoai:ri.conicet.gov.ar:11336/78626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:36.438CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
title |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
spellingShingle |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. Sydes, Daniel Capacitively Coupled Contactless Conductivity Detection Capillary Electrophoresis Dynamic Electric Potential Control Glass Microfluidic Interface Isotachophoresis |
title_short |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
title_full |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
title_fullStr |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
title_full_unstemmed |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
title_sort |
On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes. |
dc.creator.none.fl_str_mv |
Sydes, Daniel Kler, Pablo Alejandro Zipfl, P. Lutz, D. Bouwes, Hans Huhn, Carolin |
author |
Sydes, Daniel |
author_facet |
Sydes, Daniel Kler, Pablo Alejandro Zipfl, P. Lutz, D. Bouwes, Hans Huhn, Carolin |
author_role |
author |
author2 |
Kler, Pablo Alejandro Zipfl, P. Lutz, D. Bouwes, Hans Huhn, Carolin |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Capacitively Coupled Contactless Conductivity Detection Capillary Electrophoresis Dynamic Electric Potential Control Glass Microfluidic Interface Isotachophoresis |
topic |
Capacitively Coupled Contactless Conductivity Detection Capillary Electrophoresis Dynamic Electric Potential Control Glass Microfluidic Interface Isotachophoresis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One of the greatest challenges in multi-channel networks for electromigrative separation techniques is the control of the leakage of sample constituents and band broadening at the channel intersections in microfluidic devices or capillary-chip interfaces, which can be achieved using fixed bias or pullback potentials. These may be implemented as the first separation dimension in a 2D setup, where the electric potential at the interface to the second dimension changes with time. Thus, a dynamic control via on-line potential measurement in combination with a feedback system is needed to control electromigration into the side channels. We here present for the first time a prototype for in-channel potential measurements using a low working current in combination with a Si3N4 passivated Ti/Pt electrode at the intersection of the channels in a microfluidic interface. Exemplarily we chose capillary electrophoresis and isotachophoresis as model applications with constant vs. dynamic potential. Parallel on-chip intersection potential measurements were successfully conducted without disturbing capillary zone electrophoretic and isotachophoretic analysis regarding separation and peak performance of amino acids chosen as model analytes. This was possible due to a Si3N4 passivation layer, but also due to an ad-hoc developed high impedance instrumentation, resulting in a very low measuring electric current. Simulations of the detected isotachophoretic cross-section potential allowed a deeper understanding of the potential development during the separation. Fil: Sydes, Daniel. Iptc - Karls Eberhardt Universität Tübingen; Alemania Fil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Zipfl, P.. Fachhochschule Aalen; Alemania Fil: Lutz, D.. Fachhochschule Aalen; Alemania Fil: Bouwes, Hans. Ix-factory Gmbh; Alemania Fil: Huhn, Carolin. Iptc - Karls Eberhardt Universität Tübingen; Alemania |
description |
One of the greatest challenges in multi-channel networks for electromigrative separation techniques is the control of the leakage of sample constituents and band broadening at the channel intersections in microfluidic devices or capillary-chip interfaces, which can be achieved using fixed bias or pullback potentials. These may be implemented as the first separation dimension in a 2D setup, where the electric potential at the interface to the second dimension changes with time. Thus, a dynamic control via on-line potential measurement in combination with a feedback system is needed to control electromigration into the side channels. We here present for the first time a prototype for in-channel potential measurements using a low working current in combination with a Si3N4 passivated Ti/Pt electrode at the intersection of the channels in a microfluidic interface. Exemplarily we chose capillary electrophoresis and isotachophoresis as model applications with constant vs. dynamic potential. Parallel on-chip intersection potential measurements were successfully conducted without disturbing capillary zone electrophoretic and isotachophoretic analysis regarding separation and peak performance of amino acids chosen as model analytes. This was possible due to a Si3N4 passivation layer, but also due to an ad-hoc developed high impedance instrumentation, resulting in a very low measuring electric current. Simulations of the detected isotachophoretic cross-section potential allowed a deeper understanding of the potential development during the separation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78626 Sydes, Daniel; Kler, Pablo Alejandro; Zipfl, P.; Lutz, D.; Bouwes, Hans; et al.; On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes.; Elsevier Science Sa; Sensors and Actuators B: Chemical; 240; 3-2017; 330-337 0925-4005 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78626 |
identifier_str_mv |
Sydes, Daniel; Kler, Pablo Alejandro; Zipfl, P.; Lutz, D.; Bouwes, Hans; et al.; On-chip intermediate potential measurements for the control of O electromigration in multi-channel networks in case of time-dependent potential changes.; Elsevier Science Sa; Sensors and Actuators B: Chemical; 240; 3-2017; 330-337 0925-4005 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2016.08.152 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613789215883264 |
score |
13.070432 |