S-PTAM: Stereo Parallel Tracking and Mapping

Autores
Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; Jacobo Berlles, Julio César Alberto
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.
Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Civera Sancho, Javier. Universidad de Zaragoza; España
Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Loop Closure
Slam
Stereo Slam
Stereo Vision
Visual Slam
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59974

id CONICETDig_973b12b0c9e601d06fb9f4c6ba5b9aa9
oai_identifier_str oai:ri.conicet.gov.ar:11336/59974
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling S-PTAM: Stereo Parallel Tracking and MappingPire, Taihú Aguará NahuelFischer, ThomasCastro, Gastón Ignaciode Cristóforis, PabloCivera Sancho, JavierJacobo Berlles, Julio César AlbertoLoop ClosureSlamStereo SlamStereo VisionVisual Slamhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Civera Sancho, Javier. Universidad de Zaragoza; EspañaFil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59974Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-420921-8890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2017.03.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889015302955info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:21Zoai:ri.conicet.gov.ar:11336/59974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:22.211CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv S-PTAM: Stereo Parallel Tracking and Mapping
title S-PTAM: Stereo Parallel Tracking and Mapping
spellingShingle S-PTAM: Stereo Parallel Tracking and Mapping
Pire, Taihú Aguará Nahuel
Loop Closure
Slam
Stereo Slam
Stereo Vision
Visual Slam
title_short S-PTAM: Stereo Parallel Tracking and Mapping
title_full S-PTAM: Stereo Parallel Tracking and Mapping
title_fullStr S-PTAM: Stereo Parallel Tracking and Mapping
title_full_unstemmed S-PTAM: Stereo Parallel Tracking and Mapping
title_sort S-PTAM: Stereo Parallel Tracking and Mapping
dc.creator.none.fl_str_mv Pire, Taihú Aguará Nahuel
Fischer, Thomas
Castro, Gastón Ignacio
de Cristóforis, Pablo
Civera Sancho, Javier
Jacobo Berlles, Julio César Alberto
author Pire, Taihú Aguará Nahuel
author_facet Pire, Taihú Aguará Nahuel
Fischer, Thomas
Castro, Gastón Ignacio
de Cristóforis, Pablo
Civera Sancho, Javier
Jacobo Berlles, Julio César Alberto
author_role author
author2 Fischer, Thomas
Castro, Gastón Ignacio
de Cristóforis, Pablo
Civera Sancho, Javier
Jacobo Berlles, Julio César Alberto
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Loop Closure
Slam
Stereo Slam
Stereo Vision
Visual Slam
topic Loop Closure
Slam
Stereo Slam
Stereo Vision
Visual Slam
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.
Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Civera Sancho, Javier. Universidad de Zaragoza; España
Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59974
Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-42
0921-8890
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59974
identifier_str_mv Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-42
0921-8890
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2017.03.019
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889015302955
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269692070199296
score 13.13397