S-PTAM: Stereo Parallel Tracking and Mapping
- Autores
- Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; Jacobo Berlles, Julio César Alberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.
Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Civera Sancho, Javier. Universidad de Zaragoza; España
Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina - Materia
-
Loop Closure
Slam
Stereo Slam
Stereo Vision
Visual Slam - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59974
Ver los metadatos del registro completo
id |
CONICETDig_973b12b0c9e601d06fb9f4c6ba5b9aa9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
S-PTAM: Stereo Parallel Tracking and MappingPire, Taihú Aguará NahuelFischer, ThomasCastro, Gastón Ignaciode Cristóforis, PabloCivera Sancho, JavierJacobo Berlles, Julio César AlbertoLoop ClosureSlamStereo SlamStereo VisionVisual Slamhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released.Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Civera Sancho, Javier. Universidad de Zaragoza; EspañaFil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59974Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-420921-8890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2017.03.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889015302955info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:21Zoai:ri.conicet.gov.ar:11336/59974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:22.211CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
S-PTAM: Stereo Parallel Tracking and Mapping |
title |
S-PTAM: Stereo Parallel Tracking and Mapping |
spellingShingle |
S-PTAM: Stereo Parallel Tracking and Mapping Pire, Taihú Aguará Nahuel Loop Closure Slam Stereo Slam Stereo Vision Visual Slam |
title_short |
S-PTAM: Stereo Parallel Tracking and Mapping |
title_full |
S-PTAM: Stereo Parallel Tracking and Mapping |
title_fullStr |
S-PTAM: Stereo Parallel Tracking and Mapping |
title_full_unstemmed |
S-PTAM: Stereo Parallel Tracking and Mapping |
title_sort |
S-PTAM: Stereo Parallel Tracking and Mapping |
dc.creator.none.fl_str_mv |
Pire, Taihú Aguará Nahuel Fischer, Thomas Castro, Gastón Ignacio de Cristóforis, Pablo Civera Sancho, Javier Jacobo Berlles, Julio César Alberto |
author |
Pire, Taihú Aguará Nahuel |
author_facet |
Pire, Taihú Aguará Nahuel Fischer, Thomas Castro, Gastón Ignacio de Cristóforis, Pablo Civera Sancho, Javier Jacobo Berlles, Julio César Alberto |
author_role |
author |
author2 |
Fischer, Thomas Castro, Gastón Ignacio de Cristóforis, Pablo Civera Sancho, Javier Jacobo Berlles, Julio César Alberto |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Loop Closure Slam Stereo Slam Stereo Vision Visual Slam |
topic |
Loop Closure Slam Stereo Slam Stereo Vision Visual Slam |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released. Fil: Pire, Taihú Aguará Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fischer, Thomas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Castro, Gastón Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Cristóforis, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Civera Sancho, Javier. Universidad de Zaragoza; España Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
description |
This paper describes a real-time feature-based stereo SLAM system that is robust and accurate in a wide variety of conditions – indoors, outdoors, with dynamic objects, changing light conditions, fast robot motions and large-scale loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking thread estimates the camera pose at frame rate; and a mapping thread updates a keyframe-based map at a lower frequency. The stereo constraints of our system allow a robust initialization – avoiding the well-known bootstrapping problem in monocular systems–and the recovery of the real scale. Both aspects are essential for its practical use in real robotic systems that interact with the physical world. In this paper we provide the implementation details, an exhaustive evaluation of the system in public datasets and a comparison of most state-of-the-art feature detectors and descriptors on the presented system. For the benefit of the community, its code for ROS (Robot Operating System) has been released. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59974 Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-42 0921-8890 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59974 |
identifier_str_mv |
Pire, Taihú Aguará Nahuel; Fischer, Thomas; Castro, Gastón Ignacio; de Cristóforis, Pablo; Civera Sancho, Javier; et al.; S-PTAM: Stereo Parallel Tracking and Mapping; Elsevier Science; Robotics And Autonomous Systems; 93; 7-2017; 27-42 0921-8890 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2017.03.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889015302955 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269692070199296 |
score |
13.13397 |