Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices

Autores
Ermann, Leonardo; Shepelyansky, Dima L.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study numerically time evolution in classical lattices with weak or moderate nonlinearity which leads to interactions between linear modes. Our results show that in a certain strength range a moderate nonlinearity generates a dynamical thermalization process which drives the system to the quantum Gibbs distribution of probabilities, or average oscillation amplitudes. The effective dynamical temperature of the lattice varies from large positive to large negative values depending on the energy of the initially excited modes. This quantum Gibbs distribution is drastically different from the usually expected energy equipartition over linear modes corresponding to a regime of classical thermalization. Possible experimental observations of this dynamical thermalization are discussed for cold atoms in optical lattices, nonlinear photonic lattices and optical fiber arrays.
Fil: Ermann, Leonardo. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia
Materia
QUANTUM GIBBS
THERMALIZATION
NONLINEAR SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9102

id CONICETDig_e2981b06c94ecc5eb0e46fc205b97e95
oai_identifier_str oai:ri.conicet.gov.ar:11336/9102
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum Gibbs distribution from dynamical thermalization in classical nonlinear latticesErmann, LeonardoShepelyansky, Dima L.QUANTUM GIBBSTHERMALIZATIONNONLINEAR SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study numerically time evolution in classical lattices with weak or moderate nonlinearity which leads to interactions between linear modes. Our results show that in a certain strength range a moderate nonlinearity generates a dynamical thermalization process which drives the system to the quantum Gibbs distribution of probabilities, or average oscillation amplitudes. The effective dynamical temperature of the lattice varies from large positive to large negative values depending on the energy of the initially excited modes. This quantum Gibbs distribution is drastically different from the usually expected energy equipartition over linear modes corresponding to a regime of classical thermalization. Possible experimental observations of this dynamical thermalization are discussed for cold atoms in optical lattices, nonlinear photonic lattices and optical fiber arrays.Fil: Ermann, Leonardo. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; FranciaIop Publishing2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9102Ermann, Leonardo; Shepelyansky, Dima L.; Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices; Iop Publishing; New Journal Of Physics; 15; 12-2013; 123004-1230211367-2630enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/15/12/123004/articleinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/15/12/123004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:52Zoai:ri.conicet.gov.ar:11336/9102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:52.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
title Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
spellingShingle Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
Ermann, Leonardo
QUANTUM GIBBS
THERMALIZATION
NONLINEAR SYSTEMS
title_short Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
title_full Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
title_fullStr Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
title_full_unstemmed Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
title_sort Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices
dc.creator.none.fl_str_mv Ermann, Leonardo
Shepelyansky, Dima L.
author Ermann, Leonardo
author_facet Ermann, Leonardo
Shepelyansky, Dima L.
author_role author
author2 Shepelyansky, Dima L.
author2_role author
dc.subject.none.fl_str_mv QUANTUM GIBBS
THERMALIZATION
NONLINEAR SYSTEMS
topic QUANTUM GIBBS
THERMALIZATION
NONLINEAR SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study numerically time evolution in classical lattices with weak or moderate nonlinearity which leads to interactions between linear modes. Our results show that in a certain strength range a moderate nonlinearity generates a dynamical thermalization process which drives the system to the quantum Gibbs distribution of probabilities, or average oscillation amplitudes. The effective dynamical temperature of the lattice varies from large positive to large negative values depending on the energy of the initially excited modes. This quantum Gibbs distribution is drastically different from the usually expected energy equipartition over linear modes corresponding to a regime of classical thermalization. Possible experimental observations of this dynamical thermalization are discussed for cold atoms in optical lattices, nonlinear photonic lattices and optical fiber arrays.
Fil: Ermann, Leonardo. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shepelyansky, Dima L.. Centre National de la Recherche Scientifique; Francia
description We study numerically time evolution in classical lattices with weak or moderate nonlinearity which leads to interactions between linear modes. Our results show that in a certain strength range a moderate nonlinearity generates a dynamical thermalization process which drives the system to the quantum Gibbs distribution of probabilities, or average oscillation amplitudes. The effective dynamical temperature of the lattice varies from large positive to large negative values depending on the energy of the initially excited modes. This quantum Gibbs distribution is drastically different from the usually expected energy equipartition over linear modes corresponding to a regime of classical thermalization. Possible experimental observations of this dynamical thermalization are discussed for cold atoms in optical lattices, nonlinear photonic lattices and optical fiber arrays.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9102
Ermann, Leonardo; Shepelyansky, Dima L.; Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices; Iop Publishing; New Journal Of Physics; 15; 12-2013; 123004-123021
1367-2630
url http://hdl.handle.net/11336/9102
identifier_str_mv Ermann, Leonardo; Shepelyansky, Dima L.; Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices; Iop Publishing; New Journal Of Physics; 15; 12-2013; 123004-123021
1367-2630
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1367-2630/15/12/123004/article
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/15/12/123004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270060454871040
score 13.13397