Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods

Autores
Carvajal Cabrera, Christian Patricio; Andaluz, Gabriela M.; Andaluz, Víctor; Roberti, Flavio; Palacios Navarro, Guillermo; Carelli Albarracin, Ricardo Oscar
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a control scheme for aerial manipulators which allows to solve different motion problems: end-effector position control, end-effector trajectory tracking control and path-following control. The scheme has two cascaded controllers: i) the first controller is a minimum norm controller based on numerical methods, it solves the three motion control problems just by modifying the controller references. Also, since the aerial manipulator robot is a redundant system, i.e., it has extra degrees of freedom to accomplish the task, it is possible to set other control objectives in a hierarchical order. As a secondary objective of the control it is proposed to maintain a desired configuration for the robotic arm during the task. ii) The second cascade controller is designed to compensate the dynamics of the system which main objective is to drive the velocity errors to zero. The coupled dynamic model of the robotic system (hexarotor and robotic arm) is presented. This model is usually developed as a function of the forces and torques. However, in this work, it is written as a function of reference velocities which are usual references for these vehicles. The proposed control algorithms are given with the corresponding stability and robustness analysis. Finally, to validate the control scheme, experimental tests are performed in a partially structured environment with an aerial manipulator conformed by an aerial platform and a 3DOF robotic arm.
Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Andaluz, Gabriela M.. Universidad de Zaragoza; España
Fil: Andaluz, Víctor. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Palacios Navarro, Guillermo. Universidad de Zaragoza; España
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Materia
Aerial Manipulator
Robot Control
Redundant Systems
Dynamic Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258388

id CONICETDig_9ff391e48a9c9b21511b0d590d1d5531
oai_identifier_str oai:ri.conicet.gov.ar:11336/258388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multitask control of aerial manipulator robots with dynamic compensation based on numerical methodsCarvajal Cabrera, Christian PatricioAndaluz, Gabriela M.Andaluz, VíctorRoberti, FlavioPalacios Navarro, GuillermoCarelli Albarracin, Ricardo OscarAerial ManipulatorRobot ControlRedundant SystemsDynamic Modelhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents a control scheme for aerial manipulators which allows to solve different motion problems: end-effector position control, end-effector trajectory tracking control and path-following control. The scheme has two cascaded controllers: i) the first controller is a minimum norm controller based on numerical methods, it solves the three motion control problems just by modifying the controller references. Also, since the aerial manipulator robot is a redundant system, i.e., it has extra degrees of freedom to accomplish the task, it is possible to set other control objectives in a hierarchical order. As a secondary objective of the control it is proposed to maintain a desired configuration for the robotic arm during the task. ii) The second cascade controller is designed to compensate the dynamics of the system which main objective is to drive the velocity errors to zero. The coupled dynamic model of the robotic system (hexarotor and robotic arm) is presented. This model is usually developed as a function of the forces and torques. However, in this work, it is written as a function of reference velocities which are usual references for these vehicles. The proposed control algorithms are given with the corresponding stability and robustness analysis. Finally, to validate the control scheme, experimental tests are performed in a partially structured environment with an aerial manipulator conformed by an aerial platform and a 3DOF robotic arm.Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Andaluz, Gabriela M.. Universidad de Zaragoza; EspañaFil: Andaluz, Víctor. Universidad de Las Fuerzas Armadas; EcuadorFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Palacios Navarro, Guillermo. Universidad de Zaragoza; EspañaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaElsevier Science2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258388Carvajal Cabrera, Christian Patricio; Andaluz, Gabriela M.; Andaluz, Víctor; Roberti, Flavio; Palacios Navarro, Guillermo; et al.; Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods; Elsevier Science; Robotics And Autonomous Systems; 173; 104614; 3-2024; 1-180921-8890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889023002531info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2023.104614info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:15Zoai:ri.conicet.gov.ar:11336/258388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:15.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
title Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
spellingShingle Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
Carvajal Cabrera, Christian Patricio
Aerial Manipulator
Robot Control
Redundant Systems
Dynamic Model
title_short Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
title_full Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
title_fullStr Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
title_full_unstemmed Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
title_sort Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods
dc.creator.none.fl_str_mv Carvajal Cabrera, Christian Patricio
Andaluz, Gabriela M.
Andaluz, Víctor
Roberti, Flavio
Palacios Navarro, Guillermo
Carelli Albarracin, Ricardo Oscar
author Carvajal Cabrera, Christian Patricio
author_facet Carvajal Cabrera, Christian Patricio
Andaluz, Gabriela M.
Andaluz, Víctor
Roberti, Flavio
Palacios Navarro, Guillermo
Carelli Albarracin, Ricardo Oscar
author_role author
author2 Andaluz, Gabriela M.
Andaluz, Víctor
Roberti, Flavio
Palacios Navarro, Guillermo
Carelli Albarracin, Ricardo Oscar
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Aerial Manipulator
Robot Control
Redundant Systems
Dynamic Model
topic Aerial Manipulator
Robot Control
Redundant Systems
Dynamic Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents a control scheme for aerial manipulators which allows to solve different motion problems: end-effector position control, end-effector trajectory tracking control and path-following control. The scheme has two cascaded controllers: i) the first controller is a minimum norm controller based on numerical methods, it solves the three motion control problems just by modifying the controller references. Also, since the aerial manipulator robot is a redundant system, i.e., it has extra degrees of freedom to accomplish the task, it is possible to set other control objectives in a hierarchical order. As a secondary objective of the control it is proposed to maintain a desired configuration for the robotic arm during the task. ii) The second cascade controller is designed to compensate the dynamics of the system which main objective is to drive the velocity errors to zero. The coupled dynamic model of the robotic system (hexarotor and robotic arm) is presented. This model is usually developed as a function of the forces and torques. However, in this work, it is written as a function of reference velocities which are usual references for these vehicles. The proposed control algorithms are given with the corresponding stability and robustness analysis. Finally, to validate the control scheme, experimental tests are performed in a partially structured environment with an aerial manipulator conformed by an aerial platform and a 3DOF robotic arm.
Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Andaluz, Gabriela M.. Universidad de Zaragoza; España
Fil: Andaluz, Víctor. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Palacios Navarro, Guillermo. Universidad de Zaragoza; España
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
description This paper presents a control scheme for aerial manipulators which allows to solve different motion problems: end-effector position control, end-effector trajectory tracking control and path-following control. The scheme has two cascaded controllers: i) the first controller is a minimum norm controller based on numerical methods, it solves the three motion control problems just by modifying the controller references. Also, since the aerial manipulator robot is a redundant system, i.e., it has extra degrees of freedom to accomplish the task, it is possible to set other control objectives in a hierarchical order. As a secondary objective of the control it is proposed to maintain a desired configuration for the robotic arm during the task. ii) The second cascade controller is designed to compensate the dynamics of the system which main objective is to drive the velocity errors to zero. The coupled dynamic model of the robotic system (hexarotor and robotic arm) is presented. This model is usually developed as a function of the forces and torques. However, in this work, it is written as a function of reference velocities which are usual references for these vehicles. The proposed control algorithms are given with the corresponding stability and robustness analysis. Finally, to validate the control scheme, experimental tests are performed in a partially structured environment with an aerial manipulator conformed by an aerial platform and a 3DOF robotic arm.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258388
Carvajal Cabrera, Christian Patricio; Andaluz, Gabriela M.; Andaluz, Víctor; Roberti, Flavio; Palacios Navarro, Guillermo; et al.; Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods; Elsevier Science; Robotics And Autonomous Systems; 173; 104614; 3-2024; 1-18
0921-8890
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258388
identifier_str_mv Carvajal Cabrera, Christian Patricio; Andaluz, Gabriela M.; Andaluz, Víctor; Roberti, Flavio; Palacios Navarro, Guillermo; et al.; Multitask control of aerial manipulator robots with dynamic compensation based on numerical methods; Elsevier Science; Robotics And Autonomous Systems; 173; 104614; 3-2024; 1-18
0921-8890
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889023002531
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2023.104614
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614491935866880
score 13.070432