Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique
- Autores
- Rossomando, Francisco Guido; Serrano, Mario Emanuel; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- (is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method.
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina - Materia
-
Robot manipulator
Saturated Control Technique
Nonlinear control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142784
Ver los metadatos del registro completo
id |
CONICETDig_429be99d9ef55954825ecba5450400f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142784 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control TechniqueRossomando, Francisco GuidoSerrano, Mario EmanuelSoria, Carlos MiguelScaglia, Gustavo Juan EduardoRobot manipulatorSaturated Control TechniqueNonlinear controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2(is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method.Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaHindawi Publishing Corporation2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142784Rossomando, Francisco Guido; Serrano, Mario Emanuel; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 5-2020; 1-141024-123X1563-5147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2020/3240210/info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/3240210info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:43Zoai:ri.conicet.gov.ar:11336/142784instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:43.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
title |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
spellingShingle |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique Rossomando, Francisco Guido Robot manipulator Saturated Control Technique Nonlinear control |
title_short |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
title_full |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
title_fullStr |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
title_full_unstemmed |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
title_sort |
Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Serrano, Mario Emanuel Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Serrano, Mario Emanuel Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author_role |
author |
author2 |
Serrano, Mario Emanuel Soria, Carlos Miguel Scaglia, Gustavo Juan Eduardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Robot manipulator Saturated Control Technique Nonlinear control |
topic |
Robot manipulator Saturated Control Technique Nonlinear control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
(is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method. Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina |
description |
(is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142784 Rossomando, Francisco Guido; Serrano, Mario Emanuel; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 5-2020; 1-14 1024-123X 1563-5147 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142784 |
identifier_str_mv |
Rossomando, Francisco Guido; Serrano, Mario Emanuel; Soria, Carlos Miguel; Scaglia, Gustavo Juan Eduardo; Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 5-2020; 1-14 1024-123X 1563-5147 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2020/3240210/ info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/3240210 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614509448134656 |
score |
13.070432 |