Spectral shorted operators
- Autores
- Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Shorted
Operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99103
Ver los metadatos del registro completo
id |
CONICETDig_9f9a07d7f295339c0a7a4c57ed2d7da4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99103 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectral shorted operatorsAntezana, Jorge AbelStojanoff, DemetrioCorach, GustavoShortedOperatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99103Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-1880378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-005-1382-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-005-1382-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:58Zoai:ri.conicet.gov.ar:11336/99103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:58.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectral shorted operators |
title |
Spectral shorted operators |
spellingShingle |
Spectral shorted operators Antezana, Jorge Abel Shorted Operator |
title_short |
Spectral shorted operators |
title_full |
Spectral shorted operators |
title_fullStr |
Spectral shorted operators |
title_full_unstemmed |
Spectral shorted operators |
title_sort |
Spectral shorted operators |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Stojanoff, Demetrio Corach, Gustavo |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Stojanoff, Demetrio Corach, Gustavo |
author_role |
author |
author2 |
Stojanoff, Demetrio Corach, Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Shorted Operator |
topic |
Shorted Operator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99103 Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-188 0378-620X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99103 |
identifier_str_mv |
Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-188 0378-620X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-005-1382-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-005-1382-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614319148367872 |
score |
13.070432 |