Spectral shorted operators

Autores
Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
Shorted
Operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99103

id CONICETDig_9f9a07d7f295339c0a7a4c57ed2d7da4
oai_identifier_str oai:ri.conicet.gov.ar:11336/99103
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spectral shorted operatorsAntezana, Jorge AbelStojanoff, DemetrioCorach, GustavoShortedOperatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99103Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-1880378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-005-1382-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-005-1382-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:58Zoai:ri.conicet.gov.ar:11336/99103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:58.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spectral shorted operators
title Spectral shorted operators
spellingShingle Spectral shorted operators
Antezana, Jorge Abel
Shorted
Operator
title_short Spectral shorted operators
title_full Spectral shorted operators
title_fullStr Spectral shorted operators
title_full_unstemmed Spectral shorted operators
title_sort Spectral shorted operators
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Stojanoff, Demetrio
Corach, Gustavo
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Stojanoff, Demetrio
Corach, Gustavo
author_role author
author2 Stojanoff, Demetrio
Corach, Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Shorted
Operator
topic Shorted
Operator
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description If H is a Hilbert space, S is a closed subspace of H, and A is a positive bounded linear operator on H, the spectral shorted operator ρ(S,A) is defined as the infimum of the sequence ∑(S,An)1/n, where denotes ∑(S,B) the shorted operator of B to S. We characterize the left spectral resolution of ρ(S,A) and show several properties of this operator, particularly in the case that dim S=1. We use these results to generalize the concept of Kolmogorov complexity for the infinite dimensional case and for non invertible operators.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99103
Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-188
0378-620X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99103
identifier_str_mv Antezana, Jorge Abel; Stojanoff, Demetrio; Corach, Gustavo; Spectral shorted operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 55; 12-2006; 169-188
0378-620X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-005-1382-4
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-005-1382-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614319148367872
score 13.070432