Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

Autores
Schwen, D.; Bringa, Eduardo Marcial; Krauser, J.; Weidinger, A.; Trautmann, C.; Hofsass, H.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2bonding along the tracks with the hillocks containing almost no sp3 contribution.
Fil: Schwen, D.. University of Illinois at Urbana-Champaign. Department of Materials Science and Engineering; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Krauser, J.. Hochschule Harz; Alemania
Fil: Weidinger, A.. Helmholtz-Zentrum Berlin fur Materialien und Energie; Alemania
Fil: Trautmann, C.. GSI Helmholtzzentrum; Alemania
Fil: Hofsass, H.. Universitat Gottingen. Physikalisches Institut; Alemania
Materia
Diamond-Like Carbon
Ion Beam Effects
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19293

id CONICETDig_1130da76d501145aafe0a739e9d20dcb
oai_identifier_str oai:ri.conicet.gov.ar:11336/19293
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulationsSchwen, D.Bringa, Eduardo MarcialKrauser, J.Weidinger, A.Trautmann, C.Hofsass, H.Diamond-Like CarbonIon Beam Effectshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2bonding along the tracks with the hillocks containing almost no sp3 contribution.Fil: Schwen, D.. University of Illinois at Urbana-Champaign. Department of Materials Science and Engineering; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Krauser, J.. Hochschule Harz; AlemaniaFil: Weidinger, A.. Helmholtz-Zentrum Berlin fur Materialien und Energie; AlemaniaFil: Trautmann, C.. GSI Helmholtzzentrum; AlemaniaFil: Hofsass, H.. Universitat Gottingen. Physikalisches Institut; AlemaniaAmerican Institute Of Physics2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19293Schwen, D.; Bringa, Eduardo Marcial; Krauser, J.; Weidinger, A.; Trautmann, C.; et al.; Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations; American Institute Of Physics; Applied Physics Letters; 101; 11; 9-2012; 1-4; 1131150003-6951CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4752455info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4752455info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:48Zoai:ri.conicet.gov.ar:11336/19293instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:49.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
title Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
spellingShingle Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
Schwen, D.
Diamond-Like Carbon
Ion Beam Effects
title_short Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
title_full Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
title_fullStr Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
title_full_unstemmed Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
title_sort Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations
dc.creator.none.fl_str_mv Schwen, D.
Bringa, Eduardo Marcial
Krauser, J.
Weidinger, A.
Trautmann, C.
Hofsass, H.
author Schwen, D.
author_facet Schwen, D.
Bringa, Eduardo Marcial
Krauser, J.
Weidinger, A.
Trautmann, C.
Hofsass, H.
author_role author
author2 Bringa, Eduardo Marcial
Krauser, J.
Weidinger, A.
Trautmann, C.
Hofsass, H.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Diamond-Like Carbon
Ion Beam Effects
topic Diamond-Like Carbon
Ion Beam Effects
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2bonding along the tracks with the hillocks containing almost no sp3 contribution.
Fil: Schwen, D.. University of Illinois at Urbana-Champaign. Department of Materials Science and Engineering; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Krauser, J.. Hochschule Harz; Alemania
Fil: Weidinger, A.. Helmholtz-Zentrum Berlin fur Materialien und Energie; Alemania
Fil: Trautmann, C.. GSI Helmholtzzentrum; Alemania
Fil: Hofsass, H.. Universitat Gottingen. Physikalisches Institut; Alemania
description The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2bonding along the tracks with the hillocks containing almost no sp3 contribution.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19293
Schwen, D.; Bringa, Eduardo Marcial; Krauser, J.; Weidinger, A.; Trautmann, C.; et al.; Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations; American Institute Of Physics; Applied Physics Letters; 101; 11; 9-2012; 1-4; 113115
0003-6951
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19293
identifier_str_mv Schwen, D.; Bringa, Eduardo Marcial; Krauser, J.; Weidinger, A.; Trautmann, C.; et al.; Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations; American Institute Of Physics; Applied Physics Letters; 101; 11; 9-2012; 1-4; 113115
0003-6951
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4752455
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4752455
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270018901901312
score 13.13397