Automatic detection of learning styles: state of the art

Autores
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Materia
Learning Styles
User Model
Educational Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6832

id CONICETDig_9deb112b4fb767a7f3e6b128f4902e24
oai_identifier_str oai:ri.conicet.gov.ar:11336/6832
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automatic detection of learning styles: state of the artFeldman, JuanMonteserin, Ariel JoséAmandi, Analia AdrianaLearning StylesUser ModelEducational Systemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6832Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-1860269-2821enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10462-014-9422-6info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1007/s10462-014-9422-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:46Zoai:ri.conicet.gov.ar:11336/6832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:47.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automatic detection of learning styles: state of the art
title Automatic detection of learning styles: state of the art
spellingShingle Automatic detection of learning styles: state of the art
Feldman, Juan
Learning Styles
User Model
Educational Systems
title_short Automatic detection of learning styles: state of the art
title_full Automatic detection of learning styles: state of the art
title_fullStr Automatic detection of learning styles: state of the art
title_full_unstemmed Automatic detection of learning styles: state of the art
title_sort Automatic detection of learning styles: state of the art
dc.creator.none.fl_str_mv Feldman, Juan
Monteserin, Ariel José
Amandi, Analia Adriana
author Feldman, Juan
author_facet Feldman, Juan
Monteserin, Ariel José
Amandi, Analia Adriana
author_role author
author2 Monteserin, Ariel José
Amandi, Analia Adriana
author2_role author
author
dc.subject.none.fl_str_mv Learning Styles
User Model
Educational Systems
topic Learning Styles
User Model
Educational Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
description A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6832
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186
0269-2821
url http://hdl.handle.net/11336/6832
identifier_str_mv Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186
0269-2821
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10462-014-9422-6
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10462-014-9422-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980792610848768
score 12.993085