Automatic detection of learning styles: state of the art
- Autores
- Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Learning Styles
User Model
Educational Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6832
Ver los metadatos del registro completo
id |
CONICETDig_9deb112b4fb767a7f3e6b128f4902e24 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6832 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic detection of learning styles: state of the artFeldman, JuanMonteserin, Ariel JoséAmandi, Analia AdrianaLearning StylesUser ModelEducational Systemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6832Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-1860269-2821enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10462-014-9422-6info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1007/s10462-014-9422-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:46Zoai:ri.conicet.gov.ar:11336/6832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:47.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic detection of learning styles: state of the art |
title |
Automatic detection of learning styles: state of the art |
spellingShingle |
Automatic detection of learning styles: state of the art Feldman, Juan Learning Styles User Model Educational Systems |
title_short |
Automatic detection of learning styles: state of the art |
title_full |
Automatic detection of learning styles: state of the art |
title_fullStr |
Automatic detection of learning styles: state of the art |
title_full_unstemmed |
Automatic detection of learning styles: state of the art |
title_sort |
Automatic detection of learning styles: state of the art |
dc.creator.none.fl_str_mv |
Feldman, Juan Monteserin, Ariel José Amandi, Analia Adriana |
author |
Feldman, Juan |
author_facet |
Feldman, Juan Monteserin, Ariel José Amandi, Analia Adriana |
author_role |
author |
author2 |
Monteserin, Ariel José Amandi, Analia Adriana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Learning Styles User Model Educational Systems |
topic |
Learning Styles User Model Educational Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles. Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6832 Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186 0269-2821 |
url |
http://hdl.handle.net/11336/6832 |
identifier_str_mv |
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186 0269-2821 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10462-014-9422-6 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1007/s10462-014-9422-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980792610848768 |
score |
12.993085 |