Symmetries and periodic orbits in simple hybrid Routhian systems

Autores
Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.
Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
Fil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
HYBRID SYSTEMS
POINCARÉ MAP
ROUTH REDUCTION
SYMMETRIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/150253

id CONICETDig_9d67109d9879a8615b73ca5ff28dd4fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/150253
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Symmetries and periodic orbits in simple hybrid Routhian systemsColombo, Leonardo JesusEyrea Irazu, Maria EmmaHYBRID SYSTEMSPOINCARÉ MAPROUTH REDUCTIONSYMMETRIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaFil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaElsevier2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150253Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-331751-570XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nahs.2020.100857info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1751570X20300042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:01Zoai:ri.conicet.gov.ar:11336/150253instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:01.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Symmetries and periodic orbits in simple hybrid Routhian systems
title Symmetries and periodic orbits in simple hybrid Routhian systems
spellingShingle Symmetries and periodic orbits in simple hybrid Routhian systems
Colombo, Leonardo Jesus
HYBRID SYSTEMS
POINCARÉ MAP
ROUTH REDUCTION
SYMMETRIES
title_short Symmetries and periodic orbits in simple hybrid Routhian systems
title_full Symmetries and periodic orbits in simple hybrid Routhian systems
title_fullStr Symmetries and periodic orbits in simple hybrid Routhian systems
title_full_unstemmed Symmetries and periodic orbits in simple hybrid Routhian systems
title_sort Symmetries and periodic orbits in simple hybrid Routhian systems
dc.creator.none.fl_str_mv Colombo, Leonardo Jesus
Eyrea Irazu, Maria Emma
author Colombo, Leonardo Jesus
author_facet Colombo, Leonardo Jesus
Eyrea Irazu, Maria Emma
author_role author
author2 Eyrea Irazu, Maria Emma
author2_role author
dc.subject.none.fl_str_mv HYBRID SYSTEMS
POINCARÉ MAP
ROUTH REDUCTION
SYMMETRIES
topic HYBRID SYSTEMS
POINCARÉ MAP
ROUTH REDUCTION
SYMMETRIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.
Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
Fil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/150253
Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-33
1751-570X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/150253
identifier_str_mv Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-33
1751-570X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nahs.2020.100857
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1751570X20300042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613127242514432
score 13.069144