Symmetries and periodic orbits in simple hybrid Routhian systems
- Autores
- Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.
Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
Fil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
HYBRID SYSTEMS
POINCARÉ MAP
ROUTH REDUCTION
SYMMETRIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150253
Ver los metadatos del registro completo
id |
CONICETDig_9d67109d9879a8615b73ca5ff28dd4fe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150253 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Symmetries and periodic orbits in simple hybrid Routhian systemsColombo, Leonardo JesusEyrea Irazu, Maria EmmaHYBRID SYSTEMSPOINCARÉ MAPROUTH REDUCTIONSYMMETRIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaFil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaElsevier2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150253Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-331751-570XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nahs.2020.100857info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1751570X20300042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:01Zoai:ri.conicet.gov.ar:11336/150253instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:01.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Symmetries and periodic orbits in simple hybrid Routhian systems |
title |
Symmetries and periodic orbits in simple hybrid Routhian systems |
spellingShingle |
Symmetries and periodic orbits in simple hybrid Routhian systems Colombo, Leonardo Jesus HYBRID SYSTEMS POINCARÉ MAP ROUTH REDUCTION SYMMETRIES |
title_short |
Symmetries and periodic orbits in simple hybrid Routhian systems |
title_full |
Symmetries and periodic orbits in simple hybrid Routhian systems |
title_fullStr |
Symmetries and periodic orbits in simple hybrid Routhian systems |
title_full_unstemmed |
Symmetries and periodic orbits in simple hybrid Routhian systems |
title_sort |
Symmetries and periodic orbits in simple hybrid Routhian systems |
dc.creator.none.fl_str_mv |
Colombo, Leonardo Jesus Eyrea Irazu, Maria Emma |
author |
Colombo, Leonardo Jesus |
author_facet |
Colombo, Leonardo Jesus Eyrea Irazu, Maria Emma |
author_role |
author |
author2 |
Eyrea Irazu, Maria Emma |
author2_role |
author |
dc.subject.none.fl_str_mv |
HYBRID SYSTEMS POINCARÉ MAP ROUTH REDUCTION SYMMETRIES |
topic |
HYBRID SYSTEMS POINCARÉ MAP ROUTH REDUCTION SYMMETRIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems. Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España Fil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150253 Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-33 1751-570X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150253 |
identifier_str_mv |
Colombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-33 1751-570X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nahs.2020.100857 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1751570X20300042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613127242514432 |
score |
13.069144 |