Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
- Autores
- Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
Fil: Bravetti, A.. Universidad Nacional Autónoma de México; México
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Marrero, J. C.. Universidad de La Laguna; España
Fil: Padrón, E.. Universidad de La Laguna; España - Materia
-
Scaling symmetries
Kirillov structures
Hamiltonian systems
Contact structures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239985
Ver los metadatos del registro completo
id |
CONICETDig_3c754035c61eb5afb53dbd70ac239052 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239985 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetriesBravetti, A.Grillo, Sergio DanielMarrero, J. C.Padrón, E.Scaling symmetriesKirillov structuresHamiltonian systemsContact structureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.Fil: Bravetti, A.. Universidad Nacional Autónoma de México; MéxicoFil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Marrero, J. C.. Universidad de La Laguna; EspañaFil: Padrón, E.. Universidad de La Laguna; EspañaWiley Blackwell Publishing, Inc2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239985Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-530022-2526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:13Zoai:ri.conicet.gov.ar:11336/239985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:13.81CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
title |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
spellingShingle |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries Bravetti, A. Scaling symmetries Kirillov structures Hamiltonian systems Contact structures |
title_short |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
title_full |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
title_fullStr |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
title_full_unstemmed |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
title_sort |
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries |
dc.creator.none.fl_str_mv |
Bravetti, A. Grillo, Sergio Daniel Marrero, J. C. Padrón, E. |
author |
Bravetti, A. |
author_facet |
Bravetti, A. Grillo, Sergio Daniel Marrero, J. C. Padrón, E. |
author_role |
author |
author2 |
Grillo, Sergio Daniel Marrero, J. C. Padrón, E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Scaling symmetries Kirillov structures Hamiltonian systems Contact structures |
topic |
Scaling symmetries Kirillov structures Hamiltonian systems Contact structures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples. Fil: Bravetti, A.. Universidad Nacional Autónoma de México; México Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Marrero, J. C.. Universidad de La Laguna; España Fil: Padrón, E.. Universidad de La Laguna; España |
description |
In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239985 Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-53 0022-2526 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239985 |
identifier_str_mv |
Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-53 0022-2526 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681 info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12681 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614263076814848 |
score |
13.070432 |