Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries

Autores
Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
Fil: Bravetti, A.. Universidad Nacional Autónoma de México; México
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Marrero, J. C.. Universidad de La Laguna; España
Fil: Padrón, E.. Universidad de La Laguna; España
Materia
Scaling symmetries
Kirillov structures
Hamiltonian systems
Contact structures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/239985

id CONICETDig_3c754035c61eb5afb53dbd70ac239052
oai_identifier_str oai:ri.conicet.gov.ar:11336/239985
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetriesBravetti, A.Grillo, Sergio DanielMarrero, J. C.Padrón, E.Scaling symmetriesKirillov structuresHamiltonian systemsContact structureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.Fil: Bravetti, A.. Universidad Nacional Autónoma de México; MéxicoFil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Marrero, J. C.. Universidad de La Laguna; EspañaFil: Padrón, E.. Universidad de La Laguna; EspañaWiley Blackwell Publishing, Inc2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239985Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-530022-2526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:13Zoai:ri.conicet.gov.ar:11336/239985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:13.81CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
title Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
spellingShingle Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
Bravetti, A.
Scaling symmetries
Kirillov structures
Hamiltonian systems
Contact structures
title_short Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
title_full Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
title_fullStr Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
title_full_unstemmed Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
title_sort Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
dc.creator.none.fl_str_mv Bravetti, A.
Grillo, Sergio Daniel
Marrero, J. C.
Padrón, E.
author Bravetti, A.
author_facet Bravetti, A.
Grillo, Sergio Daniel
Marrero, J. C.
Padrón, E.
author_role author
author2 Grillo, Sergio Daniel
Marrero, J. C.
Padrón, E.
author2_role author
author
author
dc.subject.none.fl_str_mv Scaling symmetries
Kirillov structures
Hamiltonian systems
Contact structures
topic Scaling symmetries
Kirillov structures
Hamiltonian systems
Contact structures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
Fil: Bravetti, A.. Universidad Nacional Autónoma de México; México
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Marrero, J. C.. Universidad de La Laguna; España
Fil: Padrón, E.. Universidad de La Laguna; España
description In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/239985
Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-53
0022-2526
CONICET Digital
CONICET
url http://hdl.handle.net/11336/239985
identifier_str_mv Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-53
0022-2526
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681
info:eu-repo/semantics/altIdentifier/doi/10.1111/sapm.12681
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614263076814848
score 13.070432