Chaos detection tools: Application to a self-consistent triaxial model
- Autores
- Maffione, Nicolas Pablo; Darriba, Luciano Ariel; Cincotta, Pablo Miguel; Giordano, Claudia Marcela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Together with the variational indicators of chaos, the spectral analysis methods have also achieved great popularity in the field of chaos detection. The former are based on the concept of local exponential divergence. The latter are based on the numerical analysis of some particular quantities of a single orbit, e.g. its frequency. In spite of having totally different conceptual bases, they are used for the very same goals such as, for instance, separating the chaotic and the regular component. In fact, we show herein that the variational indicators serve to distinguish both components of a Hamiltonian system in a more reliable fashion than a spectral analysis method does. We study two start spaces for different energy levels of a self?consistent triaxial stellar dynamical model by means of some selected variational indicators and a spectral analysis method. In order to select the appropriate tools for this paper, we extend previous studies where we make a comparison of several variational indicators on different scenarios. Herein, we compare the Average Power Law Exponent (APLE) and an alternative quantity given by the Mean Exponential Growth factor of Neary Orbits (MEGNO): the MEGNO?s Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE). The spectral analysis method selected for the investigation is the Frequency Modified Fourier Transform (FMFT). Besides a comparative study of the APLE, the Fast Lyapunov Indicator (FLI), the Orthogonal Fast Lyapunov Indicator (OFLI) and the MEGNO/SElLCE, we show that the SElLCE could be an appropriate alternative to the MEGNO when studying large samples of initial conditions. The SElLCE separates the chaotic and the regular components reliably and identifies the different levels of chaoticity. We show that the FMFT is not as reliable as the SElLCE to describe clearly the chaotic domains in the experiments. We use the latter indicator as the main variational indicator to analyse the phase space portraits of the model under study.
Fil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
Methods: Numerical
Galaxies
Kinematics
Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3411
Ver los metadatos del registro completo
id |
CONICETDig_9cfde622379b36363e47cabf24b44a96 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3411 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chaos detection tools: Application to a self-consistent triaxial modelMaffione, Nicolas PabloDarriba, Luciano ArielCincotta, Pablo MiguelGiordano, Claudia MarcelaMethods: NumericalGalaxiesKinematicsDynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Together with the variational indicators of chaos, the spectral analysis methods have also achieved great popularity in the field of chaos detection. The former are based on the concept of local exponential divergence. The latter are based on the numerical analysis of some particular quantities of a single orbit, e.g. its frequency. In spite of having totally different conceptual bases, they are used for the very same goals such as, for instance, separating the chaotic and the regular component. In fact, we show herein that the variational indicators serve to distinguish both components of a Hamiltonian system in a more reliable fashion than a spectral analysis method does. We study two start spaces for different energy levels of a self?consistent triaxial stellar dynamical model by means of some selected variational indicators and a spectral analysis method. In order to select the appropriate tools for this paper, we extend previous studies where we make a comparison of several variational indicators on different scenarios. Herein, we compare the Average Power Law Exponent (APLE) and an alternative quantity given by the Mean Exponential Growth factor of Neary Orbits (MEGNO): the MEGNO?s Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE). The spectral analysis method selected for the investigation is the Frequency Modified Fourier Transform (FMFT). Besides a comparative study of the APLE, the Fast Lyapunov Indicator (FLI), the Orthogonal Fast Lyapunov Indicator (OFLI) and the MEGNO/SElLCE, we show that the SElLCE could be an appropriate alternative to the MEGNO when studying large samples of initial conditions. The SElLCE separates the chaotic and the regular components reliably and identifies the different levels of chaoticity. We show that the FMFT is not as reliable as the SElLCE to describe clearly the chaotic domains in the experiments. We use the latter indicator as the main variational indicator to analyse the phase space portraits of the model under study.Fil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaOxford University Press2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3411Maffione, Nicolas Pablo; Darriba, Luciano Ariel; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Chaos detection tools: Application to a self-consistent triaxial model; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 429; 3; 3-2013; 2700-27170035-8711enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/429/3/2700/1010948info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.3175info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/sts539info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:26Zoai:ri.conicet.gov.ar:11336/3411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:26.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chaos detection tools: Application to a self-consistent triaxial model |
title |
Chaos detection tools: Application to a self-consistent triaxial model |
spellingShingle |
Chaos detection tools: Application to a self-consistent triaxial model Maffione, Nicolas Pablo Methods: Numerical Galaxies Kinematics Dynamics |
title_short |
Chaos detection tools: Application to a self-consistent triaxial model |
title_full |
Chaos detection tools: Application to a self-consistent triaxial model |
title_fullStr |
Chaos detection tools: Application to a self-consistent triaxial model |
title_full_unstemmed |
Chaos detection tools: Application to a self-consistent triaxial model |
title_sort |
Chaos detection tools: Application to a self-consistent triaxial model |
dc.creator.none.fl_str_mv |
Maffione, Nicolas Pablo Darriba, Luciano Ariel Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author |
Maffione, Nicolas Pablo |
author_facet |
Maffione, Nicolas Pablo Darriba, Luciano Ariel Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author_role |
author |
author2 |
Darriba, Luciano Ariel Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Methods: Numerical Galaxies Kinematics Dynamics |
topic |
Methods: Numerical Galaxies Kinematics Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Together with the variational indicators of chaos, the spectral analysis methods have also achieved great popularity in the field of chaos detection. The former are based on the concept of local exponential divergence. The latter are based on the numerical analysis of some particular quantities of a single orbit, e.g. its frequency. In spite of having totally different conceptual bases, they are used for the very same goals such as, for instance, separating the chaotic and the regular component. In fact, we show herein that the variational indicators serve to distinguish both components of a Hamiltonian system in a more reliable fashion than a spectral analysis method does. We study two start spaces for different energy levels of a self?consistent triaxial stellar dynamical model by means of some selected variational indicators and a spectral analysis method. In order to select the appropriate tools for this paper, we extend previous studies where we make a comparison of several variational indicators on different scenarios. Herein, we compare the Average Power Law Exponent (APLE) and an alternative quantity given by the Mean Exponential Growth factor of Neary Orbits (MEGNO): the MEGNO?s Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE). The spectral analysis method selected for the investigation is the Frequency Modified Fourier Transform (FMFT). Besides a comparative study of the APLE, the Fast Lyapunov Indicator (FLI), the Orthogonal Fast Lyapunov Indicator (OFLI) and the MEGNO/SElLCE, we show that the SElLCE could be an appropriate alternative to the MEGNO when studying large samples of initial conditions. The SElLCE separates the chaotic and the regular components reliably and identifies the different levels of chaoticity. We show that the FMFT is not as reliable as the SElLCE to describe clearly the chaotic domains in the experiments. We use the latter indicator as the main variational indicator to analyse the phase space portraits of the model under study. Fil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
Together with the variational indicators of chaos, the spectral analysis methods have also achieved great popularity in the field of chaos detection. The former are based on the concept of local exponential divergence. The latter are based on the numerical analysis of some particular quantities of a single orbit, e.g. its frequency. In spite of having totally different conceptual bases, they are used for the very same goals such as, for instance, separating the chaotic and the regular component. In fact, we show herein that the variational indicators serve to distinguish both components of a Hamiltonian system in a more reliable fashion than a spectral analysis method does. We study two start spaces for different energy levels of a self?consistent triaxial stellar dynamical model by means of some selected variational indicators and a spectral analysis method. In order to select the appropriate tools for this paper, we extend previous studies where we make a comparison of several variational indicators on different scenarios. Herein, we compare the Average Power Law Exponent (APLE) and an alternative quantity given by the Mean Exponential Growth factor of Neary Orbits (MEGNO): the MEGNO?s Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE). The spectral analysis method selected for the investigation is the Frequency Modified Fourier Transform (FMFT). Besides a comparative study of the APLE, the Fast Lyapunov Indicator (FLI), the Orthogonal Fast Lyapunov Indicator (OFLI) and the MEGNO/SElLCE, we show that the SElLCE could be an appropriate alternative to the MEGNO when studying large samples of initial conditions. The SElLCE separates the chaotic and the regular components reliably and identifies the different levels of chaoticity. We show that the FMFT is not as reliable as the SElLCE to describe clearly the chaotic domains in the experiments. We use the latter indicator as the main variational indicator to analyse the phase space portraits of the model under study. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3411 Maffione, Nicolas Pablo; Darriba, Luciano Ariel; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Chaos detection tools: Application to a self-consistent triaxial model; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 429; 3; 3-2013; 2700-2717 0035-8711 |
url |
http://hdl.handle.net/11336/3411 |
identifier_str_mv |
Maffione, Nicolas Pablo; Darriba, Luciano Ariel; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Chaos detection tools: Application to a self-consistent triaxial model; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 429; 3; 3-2013; 2700-2717 0035-8711 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/429/3/2700/1010948 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.3175 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/sts539 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614276237492224 |
score |
13.070432 |