Models of cuspy triaxial stellar systems, I: stability and chaoticity

Autores
Zorzi, Alejandra Francisca; Muzzio, Juan Carlos
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.
Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
Eliptical galaxies
Kinematics
Numerical methods
Physical data
Chaos
Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42616

id CONICETDig_10606efccccd4c1d58736d67d83ac377
oai_identifier_str oai:ri.conicet.gov.ar:11336/42616
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Models of cuspy triaxial stellar systems, I: stability and chaoticityZorzi, Alejandra FranciscaMuzzio, Juan CarlosEliptical galaxiesKinematicsNumerical methodsPhysical dataChaosDynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaWiley Blackwell Publishing, Inc2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42616Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-19630035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2012.21023.xinfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/423/2/1955/977019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:10Zoai:ri.conicet.gov.ar:11336/42616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:10.495CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Models of cuspy triaxial stellar systems, I: stability and chaoticity
title Models of cuspy triaxial stellar systems, I: stability and chaoticity
spellingShingle Models of cuspy triaxial stellar systems, I: stability and chaoticity
Zorzi, Alejandra Francisca
Eliptical galaxies
Kinematics
Numerical methods
Physical data
Chaos
Dynamics
title_short Models of cuspy triaxial stellar systems, I: stability and chaoticity
title_full Models of cuspy triaxial stellar systems, I: stability and chaoticity
title_fullStr Models of cuspy triaxial stellar systems, I: stability and chaoticity
title_full_unstemmed Models of cuspy triaxial stellar systems, I: stability and chaoticity
title_sort Models of cuspy triaxial stellar systems, I: stability and chaoticity
dc.creator.none.fl_str_mv Zorzi, Alejandra Francisca
Muzzio, Juan Carlos
author Zorzi, Alejandra Francisca
author_facet Zorzi, Alejandra Francisca
Muzzio, Juan Carlos
author_role author
author2 Muzzio, Juan Carlos
author2_role author
dc.subject.none.fl_str_mv Eliptical galaxies
Kinematics
Numerical methods
Physical data
Chaos
Dynamics
topic Eliptical galaxies
Kinematics
Numerical methods
Physical data
Chaos
Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.
Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42616
Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-1963
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42616
identifier_str_mv Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-1963
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2012.21023.x
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/423/2/1955/977019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614428954198016
score 13.070432