Models of cuspy triaxial stellar systems, I: stability and chaoticity
- Autores
- Zorzi, Alejandra Francisca; Muzzio, Juan Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.
Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
Eliptical galaxies
Kinematics
Numerical methods
Physical data
Chaos
Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42616
Ver los metadatos del registro completo
id |
CONICETDig_10606efccccd4c1d58736d67d83ac377 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Models of cuspy triaxial stellar systems, I: stability and chaoticityZorzi, Alejandra FranciscaMuzzio, Juan CarlosEliptical galaxiesKinematicsNumerical methodsPhysical dataChaosDynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes.Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaWiley Blackwell Publishing, Inc2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42616Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-19630035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2012.21023.xinfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/423/2/1955/977019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:10Zoai:ri.conicet.gov.ar:11336/42616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:10.495CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
title |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
spellingShingle |
Models of cuspy triaxial stellar systems, I: stability and chaoticity Zorzi, Alejandra Francisca Eliptical galaxies Kinematics Numerical methods Physical data Chaos Dynamics |
title_short |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
title_full |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
title_fullStr |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
title_full_unstemmed |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
title_sort |
Models of cuspy triaxial stellar systems, I: stability and chaoticity |
dc.creator.none.fl_str_mv |
Zorzi, Alejandra Francisca Muzzio, Juan Carlos |
author |
Zorzi, Alejandra Francisca |
author_facet |
Zorzi, Alejandra Francisca Muzzio, Juan Carlos |
author_role |
author |
author2 |
Muzzio, Juan Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Eliptical galaxies Kinematics Numerical methods Physical data Chaos Dynamics |
topic |
Eliptical galaxies Kinematics Numerical methods Physical data Chaos Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes. Fil: Zorzi, Alejandra Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Muzzio, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
We used the N-body code ofWe used the N–body code of Hernquist & Ostriker (1992) to build a dozen cuspy (γ ≃ 1) triaxial models of stellar systems through dissipationless collapses of initially spherical distributions of 106 particles. We chose four sets of initial conditions that resulted in models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. Within each set, three different seed numbers were selected for the random number generator used to create the initial conditions, so that the three models of each set are statistically equivalent. We checked the stability of our models using the values of their central densities and of their moments of inertia, which turned out to be very constant indeed. The changes of those values were all less than 3 per cent over one Hubble time and, moreover, we show that the most likely cause of those changes are relaxation effects in the numerical code. We computed the six Lyapunov exponents of nearly 5,000 orbits in each model in order to recognize regular, partially and fully chaotic orbits. All the models turned out to be highly chaotic, with less than 25 per cent of their orbits being regular. We conclude that it is quite possible to obtain cuspy triaxial stellar models that contain large fractions of chaotic orbits and are highly stable. The difficulty to build such models with the method of Schwarzschild (1979) should be attributed to the method itself and not to physical causes. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42616 Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-1963 0035-8711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42616 |
identifier_str_mv |
Zorzi, Alejandra Francisca; Muzzio, Juan Carlos; Models of cuspy triaxial stellar systems, I: stability and chaoticity; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 423; 2; 6-2012; 1955-1963 0035-8711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2012.21023.x info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/423/2/1955/977019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614428954198016 |
score |
13.070432 |