Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America
- Autores
- Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; Verón, Santiago Ramón; Banchero, Santiago; Elena, Hernan; de Abelleyra, Dieg; Friedl, Mark A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.
Fil: Graesser, Jordan. Boston University; Estados Unidos
Fil: Stanimirova, Radost. Boston University; Estados Unidos
Fil: Tarrio, Katelyn. Boston University; Estados Unidos
Fil: Copati, Esteban J.. No especifíca;
Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Verón, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Elena, Hernan. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: de Abelleyra, Dieg. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Friedl, Mark A.. Boston University; Estados Unidos - Materia
-
LANDSAT
LANDCOVER
TIME SERIES
CONDITIONAL RANDOM FIELDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258998
Ver los metadatos del registro completo
id |
CONICETDig_9caa347c143cb0606f344303a30ba77e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258998 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South AmericaGraesser, JordanStanimirova, RadostTarrio, KatelynCopati, Esteban J.Volante, José NorbertoVerón, Santiago RamónBanchero, SantiagoElena, Hernande Abelleyra, DiegFriedl, Mark A.LANDSATLANDCOVERTIME SERIESCONDITIONAL RANDOM FIELDShttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.Fil: Graesser, Jordan. Boston University; Estados UnidosFil: Stanimirova, Radost. Boston University; Estados UnidosFil: Tarrio, Katelyn. Boston University; Estados UnidosFil: Copati, Esteban J.. No especifíca;Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Verón, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; ArgentinaFil: Elena, Hernan. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: de Abelleyra, Dieg. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; ArgentinaFil: Friedl, Mark A.. Boston University; Estados UnidosMDPI2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258998Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; et al.; Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America; MDPI; Remote Sensing; 14; 16; 8-2022; 1-282072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/14/16/4005info:eu-repo/semantics/altIdentifier/doi/10.3390/rs14164005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:27Zoai:ri.conicet.gov.ar:11336/258998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:27.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
title |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
spellingShingle |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America Graesser, Jordan LANDSAT LANDCOVER TIME SERIES CONDITIONAL RANDOM FIELDS |
title_short |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
title_full |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
title_fullStr |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
title_full_unstemmed |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
title_sort |
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America |
dc.creator.none.fl_str_mv |
Graesser, Jordan Stanimirova, Radost Tarrio, Katelyn Copati, Esteban J. Volante, José Norberto Verón, Santiago Ramón Banchero, Santiago Elena, Hernan de Abelleyra, Dieg Friedl, Mark A. |
author |
Graesser, Jordan |
author_facet |
Graesser, Jordan Stanimirova, Radost Tarrio, Katelyn Copati, Esteban J. Volante, José Norberto Verón, Santiago Ramón Banchero, Santiago Elena, Hernan de Abelleyra, Dieg Friedl, Mark A. |
author_role |
author |
author2 |
Stanimirova, Radost Tarrio, Katelyn Copati, Esteban J. Volante, José Norberto Verón, Santiago Ramón Banchero, Santiago Elena, Hernan de Abelleyra, Dieg Friedl, Mark A. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
LANDSAT LANDCOVER TIME SERIES CONDITIONAL RANDOM FIELDS |
topic |
LANDSAT LANDCOVER TIME SERIES CONDITIONAL RANDOM FIELDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods. Fil: Graesser, Jordan. Boston University; Estados Unidos Fil: Stanimirova, Radost. Boston University; Estados Unidos Fil: Tarrio, Katelyn. Boston University; Estados Unidos Fil: Copati, Esteban J.. No especifíca; Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Verón, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina Fil: Elena, Hernan. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: de Abelleyra, Dieg. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina Fil: Friedl, Mark A.. Boston University; Estados Unidos |
description |
The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258998 Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; et al.; Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America; MDPI; Remote Sensing; 14; 16; 8-2022; 1-28 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258998 |
identifier_str_mv |
Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; et al.; Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America; MDPI; Remote Sensing; 14; 16; 8-2022; 1-28 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/14/16/4005 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs14164005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613451017617408 |
score |
13.070432 |