Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data
- Autores
- Borro, María Marta; Morandeira, Natalia Soledad; Salvia, Maria Mercedes; Minotti, Priscilla Gail; Perna, Pablo Alejandro; Kandus, Patricia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a methodology to identify and map shallow lakes (SL) in the Paraná River floodplain, the largest freshwater wetland ecosystem in temperate South America. The presence and number of SL offer various ecosystem services and habitats for wildlife biodiversity. Our approach involved a frequency analysis over a 1987?2010 time series of the Normalized Difference Vegetation Index (NDVI), derived from Landsat 5 and 7 TM/ETM data. Through descriptive statistics of samples of pixels and field work in different types of SL, we established an NDVI threshold of 0.34 below which we assumed the presence of water in each pixel. The standard deviation of the estimated SL area decreases with the number of images in the analysis, being less than 10% when at least 30 images are used. The mean SL area for the whole period was 112,691 ha (10.9% of the study area). The influence of the hydrological conditions on the resulting SL map was evaluated by analyzing twelve sets of images, which were selected to span the whole period and different time frames according to multiannual dry and wet periods and to relative water level within each period. The Kappa index was then calculated between pairs of resulting SL maps. We compared our maps with the available national and international cartographic documents and with other published maps that used one or a few Landsat images. Landsat images time series provide an accurate spatial and temporal resolution for SL identification in floodplains, particularly in temperate zones with a good provision of cloud free images. The method evaluated in this paper considers the dynamics of SL and reduces the uncertainties of the fuzzy boundaries. Thus, it provides a robust database of SL and its temporal behavior to establish future monitoring programs based on the recent launch of Landsat 8 satellite.
Fil: Borro, María Marta. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morandeira, Natalia Soledad. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Minotti, Priscilla Gail. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina
Fil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kandus, Patricia. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina - Materia
-
Shallow Lakes Map
Paraná River Floodplain
Wetlands
Landsat Time Series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21508
Ver los metadatos del registro completo
id |
CONICETDig_b95f11caeda26b16c553a77a1c629fad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21508 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM dataBorro, María MartaMorandeira, Natalia SoledadSalvia, Maria MercedesMinotti, Priscilla GailPerna, Pablo AlejandroKandus, PatriciaShallow Lakes MapParaná River FloodplainWetlandsLandsat Time Serieshttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We propose a methodology to identify and map shallow lakes (SL) in the Paraná River floodplain, the largest freshwater wetland ecosystem in temperate South America. The presence and number of SL offer various ecosystem services and habitats for wildlife biodiversity. Our approach involved a frequency analysis over a 1987?2010 time series of the Normalized Difference Vegetation Index (NDVI), derived from Landsat 5 and 7 TM/ETM data. Through descriptive statistics of samples of pixels and field work in different types of SL, we established an NDVI threshold of 0.34 below which we assumed the presence of water in each pixel. The standard deviation of the estimated SL area decreases with the number of images in the analysis, being less than 10% when at least 30 images are used. The mean SL area for the whole period was 112,691 ha (10.9% of the study area). The influence of the hydrological conditions on the resulting SL map was evaluated by analyzing twelve sets of images, which were selected to span the whole period and different time frames according to multiannual dry and wet periods and to relative water level within each period. The Kappa index was then calculated between pairs of resulting SL maps. We compared our maps with the available national and international cartographic documents and with other published maps that used one or a few Landsat images. Landsat images time series provide an accurate spatial and temporal resolution for SL identification in floodplains, particularly in temperate zones with a good provision of cloud free images. The method evaluated in this paper considers the dynamics of SL and reduces the uncertainties of the fuzzy boundaries. Thus, it provides a robust database of SL and its temporal behavior to establish future monitoring programs based on the recent launch of Landsat 8 satellite.Fil: Borro, María Marta. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morandeira, Natalia Soledad. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Minotti, Priscilla Gail. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; ArgentinaFil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kandus, Patricia. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; ArgentinaElsevier Science2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21508Borro, María Marta; Morandeira, Natalia Soledad; Salvia, Maria Mercedes; Minotti, Priscilla Gail; Perna, Pablo Alejandro; et al.; Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data; Elsevier Science; Journal Of Hydrology; 512; 5-2014; 39-520022-1694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022169414001656info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2014.02.057info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:50Zoai:ri.conicet.gov.ar:11336/21508instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:51.269CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
title |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
spellingShingle |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data Borro, María Marta Shallow Lakes Map Paraná River Floodplain Wetlands Landsat Time Series |
title_short |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
title_full |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
title_fullStr |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
title_full_unstemmed |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
title_sort |
Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data |
dc.creator.none.fl_str_mv |
Borro, María Marta Morandeira, Natalia Soledad Salvia, Maria Mercedes Minotti, Priscilla Gail Perna, Pablo Alejandro Kandus, Patricia |
author |
Borro, María Marta |
author_facet |
Borro, María Marta Morandeira, Natalia Soledad Salvia, Maria Mercedes Minotti, Priscilla Gail Perna, Pablo Alejandro Kandus, Patricia |
author_role |
author |
author2 |
Morandeira, Natalia Soledad Salvia, Maria Mercedes Minotti, Priscilla Gail Perna, Pablo Alejandro Kandus, Patricia |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Shallow Lakes Map Paraná River Floodplain Wetlands Landsat Time Series |
topic |
Shallow Lakes Map Paraná River Floodplain Wetlands Landsat Time Series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a methodology to identify and map shallow lakes (SL) in the Paraná River floodplain, the largest freshwater wetland ecosystem in temperate South America. The presence and number of SL offer various ecosystem services and habitats for wildlife biodiversity. Our approach involved a frequency analysis over a 1987?2010 time series of the Normalized Difference Vegetation Index (NDVI), derived from Landsat 5 and 7 TM/ETM data. Through descriptive statistics of samples of pixels and field work in different types of SL, we established an NDVI threshold of 0.34 below which we assumed the presence of water in each pixel. The standard deviation of the estimated SL area decreases with the number of images in the analysis, being less than 10% when at least 30 images are used. The mean SL area for the whole period was 112,691 ha (10.9% of the study area). The influence of the hydrological conditions on the resulting SL map was evaluated by analyzing twelve sets of images, which were selected to span the whole period and different time frames according to multiannual dry and wet periods and to relative water level within each period. The Kappa index was then calculated between pairs of resulting SL maps. We compared our maps with the available national and international cartographic documents and with other published maps that used one or a few Landsat images. Landsat images time series provide an accurate spatial and temporal resolution for SL identification in floodplains, particularly in temperate zones with a good provision of cloud free images. The method evaluated in this paper considers the dynamics of SL and reduces the uncertainties of the fuzzy boundaries. Thus, it provides a robust database of SL and its temporal behavior to establish future monitoring programs based on the recent launch of Landsat 8 satellite. Fil: Borro, María Marta. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Morandeira, Natalia Soledad. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Minotti, Priscilla Gail. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina Fil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Kandus, Patricia. Universidad Nacional de San Martin. Instituto de Investigación e Ingenieria Ambiental. Laboratorio de Ecologia, Teledeteccion y Ecoinformática; Argentina |
description |
We propose a methodology to identify and map shallow lakes (SL) in the Paraná River floodplain, the largest freshwater wetland ecosystem in temperate South America. The presence and number of SL offer various ecosystem services and habitats for wildlife biodiversity. Our approach involved a frequency analysis over a 1987?2010 time series of the Normalized Difference Vegetation Index (NDVI), derived from Landsat 5 and 7 TM/ETM data. Through descriptive statistics of samples of pixels and field work in different types of SL, we established an NDVI threshold of 0.34 below which we assumed the presence of water in each pixel. The standard deviation of the estimated SL area decreases with the number of images in the analysis, being less than 10% when at least 30 images are used. The mean SL area for the whole period was 112,691 ha (10.9% of the study area). The influence of the hydrological conditions on the resulting SL map was evaluated by analyzing twelve sets of images, which were selected to span the whole period and different time frames according to multiannual dry and wet periods and to relative water level within each period. The Kappa index was then calculated between pairs of resulting SL maps. We compared our maps with the available national and international cartographic documents and with other published maps that used one or a few Landsat images. Landsat images time series provide an accurate spatial and temporal resolution for SL identification in floodplains, particularly in temperate zones with a good provision of cloud free images. The method evaluated in this paper considers the dynamics of SL and reduces the uncertainties of the fuzzy boundaries. Thus, it provides a robust database of SL and its temporal behavior to establish future monitoring programs based on the recent launch of Landsat 8 satellite. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21508 Borro, María Marta; Morandeira, Natalia Soledad; Salvia, Maria Mercedes; Minotti, Priscilla Gail; Perna, Pablo Alejandro; et al.; Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data; Elsevier Science; Journal Of Hydrology; 512; 5-2014; 39-52 0022-1694 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21508 |
identifier_str_mv |
Borro, María Marta; Morandeira, Natalia Soledad; Salvia, Maria Mercedes; Minotti, Priscilla Gail; Perna, Pablo Alejandro; et al.; Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data; Elsevier Science; Journal Of Hydrology; 512; 5-2014; 39-52 0022-1694 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022169414001656 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2014.02.057 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082996337115136 |
score |
13.22299 |