Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway
- Autores
- Martínez León, Eduardo Antonio; Osycka Salut, Claudia Elena; Signorelli, J.; Pozo, P.; Pérez, B.; Kong, M.; Morales, P.; Perez Martinez, Silvina Laura; Díaz, E.S.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- STUDY QUESTION Does fibronectin (Fn) stimulate the sperm capacitation process in humans? SUMMARY ANSWER Fibronectin stimulates human sperm capacitation. WHAT IS KNOWN ALREADY Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity. Fibronectin is a glycoprotein that is present in the fluid and the oviduct epithelium, and its receptor (alpha 5 beta 1 integrin) is present in human sperm. When alpha 5 beta 1 (α5β1) integrin binds to fibronectin, intracellular signals similar to the process of sperm capacitation are activated. STUDY DESIGN, SIZE, DURATION Human sperm were selected via a percoll gradient and were then incubated in non-capacitated medium (NCM) or reconstituted capacitated medium (RCM), in the presence or absence of fibronectin for different time periods. A total of 39 donors were used during the study, which lasted 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Freshly ejaculated sperm from healthy volunteers were obtained by masturbation. All semen samples were normal according to the World Health Organization parameters. Six approaches were used to determine the effects of fibronectin on sperm capacitation: chlortetracycline (CTC) assay, heterologous co-culture of human sperm with bovine oviductal epithelial cells (BOEC), measurement of cyclic (c) AMP levels, activity of protein kinase A (PKA), phosphorylation of proteins in tyrosine (Tyr) residues, and induction of acrosome reaction with progesterone. MAIN RESULTS AND THE ROLE OF CHANCE When sperm were incubated in RCM in the presence of Fn, we observed differences with respect to sperm incubated in RCM without Fn (control): (i) a 10% increase in the percentage of sperm with the B pattern (capacitated sperm) of CTC fluorescence from the beginning of capacitation (P < 0.001); (ii) an effect on both the concentration of cAMP (P < 0.05) and PKA activity (P < 0.05) during early capacitation; (iii) an increase in the degree of phosphorylation of proteins on tyrosine residues after 60 min of capacitation (P < 0.01); (iv) an increase in the percentage of acrosome-reacted sperm in response to progesterone (P < 0.05); and (v) a decrease in the percentage of sperm attached to BOEC (P < 0.05). Moreover, we noted that the effect of Fn was specific and mediated by alpha 5 beta 1 integrin (P < 0.001). Fn by itself had no effect on sperm capacitation. LIMITATIONS, REASONS FOR CAUTION This study was carried out with sperm from young adult men. Men with abnormal semen samples were excluded. The results cannot be directly extrapolated to other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS Currently, male subfertility has become a huge public health problem, which makes it imperative to develop new treatments. This is a novel discovery that extends our current knowledge concerning normal and pathological sperm physiology as well as events that regulate the process of fertilization.
Fil: Martínez León, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Antofagasta; Chile
Fil: Osycka Salut, Claudia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Signorelli, J.. Universidad de Antofagasta; Chile
Fil: Pozo, P.. Universidad de Antofagasta; Chile
Fil: Pérez, B.. Universidad de Antofagasta; Chile
Fil: Kong, M.. Universidad de Antofagasta; Chile
Fil: Morales, P.. Universidad de Antofagasta; Chile
Fil: Perez Martinez, Silvina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Díaz, E.S.. Universidad de Antofagasta; Chile - Materia
-
CAPACITATION
CYCLIC AMP
FIBRONECTIN
HUMAN SPERM
PROTEIN KINASE A - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182592
Ver los metadatos del registro completo
id |
CONICETDig_9b15332e52487588275b37e40c845f02 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182592 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathwayMartínez León, Eduardo AntonioOsycka Salut, Claudia ElenaSignorelli, J.Pozo, P.Pérez, B.Kong, M.Morales, P.Perez Martinez, Silvina LauraDíaz, E.S.CAPACITATIONCYCLIC AMPFIBRONECTINHUMAN SPERMPROTEIN KINASE Ahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1STUDY QUESTION Does fibronectin (Fn) stimulate the sperm capacitation process in humans? SUMMARY ANSWER Fibronectin stimulates human sperm capacitation. WHAT IS KNOWN ALREADY Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity. Fibronectin is a glycoprotein that is present in the fluid and the oviduct epithelium, and its receptor (alpha 5 beta 1 integrin) is present in human sperm. When alpha 5 beta 1 (α5β1) integrin binds to fibronectin, intracellular signals similar to the process of sperm capacitation are activated. STUDY DESIGN, SIZE, DURATION Human sperm were selected via a percoll gradient and were then incubated in non-capacitated medium (NCM) or reconstituted capacitated medium (RCM), in the presence or absence of fibronectin for different time periods. A total of 39 donors were used during the study, which lasted 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Freshly ejaculated sperm from healthy volunteers were obtained by masturbation. All semen samples were normal according to the World Health Organization parameters. Six approaches were used to determine the effects of fibronectin on sperm capacitation: chlortetracycline (CTC) assay, heterologous co-culture of human sperm with bovine oviductal epithelial cells (BOEC), measurement of cyclic (c) AMP levels, activity of protein kinase A (PKA), phosphorylation of proteins in tyrosine (Tyr) residues, and induction of acrosome reaction with progesterone. MAIN RESULTS AND THE ROLE OF CHANCE When sperm were incubated in RCM in the presence of Fn, we observed differences with respect to sperm incubated in RCM without Fn (control): (i) a 10% increase in the percentage of sperm with the B pattern (capacitated sperm) of CTC fluorescence from the beginning of capacitation (P < 0.001); (ii) an effect on both the concentration of cAMP (P < 0.05) and PKA activity (P < 0.05) during early capacitation; (iii) an increase in the degree of phosphorylation of proteins on tyrosine residues after 60 min of capacitation (P < 0.01); (iv) an increase in the percentage of acrosome-reacted sperm in response to progesterone (P < 0.05); and (v) a decrease in the percentage of sperm attached to BOEC (P < 0.05). Moreover, we noted that the effect of Fn was specific and mediated by alpha 5 beta 1 integrin (P < 0.001). Fn by itself had no effect on sperm capacitation. LIMITATIONS, REASONS FOR CAUTION This study was carried out with sperm from young adult men. Men with abnormal semen samples were excluded. The results cannot be directly extrapolated to other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS Currently, male subfertility has become a huge public health problem, which makes it imperative to develop new treatments. This is a novel discovery that extends our current knowledge concerning normal and pathological sperm physiology as well as events that regulate the process of fertilization.Fil: Martínez León, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Antofagasta; ChileFil: Osycka Salut, Claudia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Signorelli, J.. Universidad de Antofagasta; ChileFil: Pozo, P.. Universidad de Antofagasta; ChileFil: Pérez, B.. Universidad de Antofagasta; ChileFil: Kong, M.. Universidad de Antofagasta; ChileFil: Morales, P.. Universidad de Antofagasta; ChileFil: Perez Martinez, Silvina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Díaz, E.S.. Universidad de Antofagasta; ChileOxford University Press2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182592Martínez León, Eduardo Antonio; Osycka Salut, Claudia Elena; Signorelli, J.; Pozo, P.; Pérez, B.; et al.; Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway; Oxford University Press; Human Reproduction; 30; 9; 9-2015; 2138-21510268-11611460-2350CONICET DigitalCONICETenghttps://ri.conicet.gov.ar/handle/11336/96702info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/humrep/article/30/9/2138/621893info:eu-repo/semantics/altIdentifier/doi/10.1093/humrep/dev154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:48Zoai:ri.conicet.gov.ar:11336/182592instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:48.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
title |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
spellingShingle |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway Martínez León, Eduardo Antonio CAPACITATION CYCLIC AMP FIBRONECTIN HUMAN SPERM PROTEIN KINASE A |
title_short |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
title_full |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
title_fullStr |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
title_full_unstemmed |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
title_sort |
Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway |
dc.creator.none.fl_str_mv |
Martínez León, Eduardo Antonio Osycka Salut, Claudia Elena Signorelli, J. Pozo, P. Pérez, B. Kong, M. Morales, P. Perez Martinez, Silvina Laura Díaz, E.S. |
author |
Martínez León, Eduardo Antonio |
author_facet |
Martínez León, Eduardo Antonio Osycka Salut, Claudia Elena Signorelli, J. Pozo, P. Pérez, B. Kong, M. Morales, P. Perez Martinez, Silvina Laura Díaz, E.S. |
author_role |
author |
author2 |
Osycka Salut, Claudia Elena Signorelli, J. Pozo, P. Pérez, B. Kong, M. Morales, P. Perez Martinez, Silvina Laura Díaz, E.S. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
CAPACITATION CYCLIC AMP FIBRONECTIN HUMAN SPERM PROTEIN KINASE A |
topic |
CAPACITATION CYCLIC AMP FIBRONECTIN HUMAN SPERM PROTEIN KINASE A |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
STUDY QUESTION Does fibronectin (Fn) stimulate the sperm capacitation process in humans? SUMMARY ANSWER Fibronectin stimulates human sperm capacitation. WHAT IS KNOWN ALREADY Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity. Fibronectin is a glycoprotein that is present in the fluid and the oviduct epithelium, and its receptor (alpha 5 beta 1 integrin) is present in human sperm. When alpha 5 beta 1 (α5β1) integrin binds to fibronectin, intracellular signals similar to the process of sperm capacitation are activated. STUDY DESIGN, SIZE, DURATION Human sperm were selected via a percoll gradient and were then incubated in non-capacitated medium (NCM) or reconstituted capacitated medium (RCM), in the presence or absence of fibronectin for different time periods. A total of 39 donors were used during the study, which lasted 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Freshly ejaculated sperm from healthy volunteers were obtained by masturbation. All semen samples were normal according to the World Health Organization parameters. Six approaches were used to determine the effects of fibronectin on sperm capacitation: chlortetracycline (CTC) assay, heterologous co-culture of human sperm with bovine oviductal epithelial cells (BOEC), measurement of cyclic (c) AMP levels, activity of protein kinase A (PKA), phosphorylation of proteins in tyrosine (Tyr) residues, and induction of acrosome reaction with progesterone. MAIN RESULTS AND THE ROLE OF CHANCE When sperm were incubated in RCM in the presence of Fn, we observed differences with respect to sperm incubated in RCM without Fn (control): (i) a 10% increase in the percentage of sperm with the B pattern (capacitated sperm) of CTC fluorescence from the beginning of capacitation (P < 0.001); (ii) an effect on both the concentration of cAMP (P < 0.05) and PKA activity (P < 0.05) during early capacitation; (iii) an increase in the degree of phosphorylation of proteins on tyrosine residues after 60 min of capacitation (P < 0.01); (iv) an increase in the percentage of acrosome-reacted sperm in response to progesterone (P < 0.05); and (v) a decrease in the percentage of sperm attached to BOEC (P < 0.05). Moreover, we noted that the effect of Fn was specific and mediated by alpha 5 beta 1 integrin (P < 0.001). Fn by itself had no effect on sperm capacitation. LIMITATIONS, REASONS FOR CAUTION This study was carried out with sperm from young adult men. Men with abnormal semen samples were excluded. The results cannot be directly extrapolated to other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS Currently, male subfertility has become a huge public health problem, which makes it imperative to develop new treatments. This is a novel discovery that extends our current knowledge concerning normal and pathological sperm physiology as well as events that regulate the process of fertilization. Fil: Martínez León, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Antofagasta; Chile Fil: Osycka Salut, Claudia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Signorelli, J.. Universidad de Antofagasta; Chile Fil: Pozo, P.. Universidad de Antofagasta; Chile Fil: Pérez, B.. Universidad de Antofagasta; Chile Fil: Kong, M.. Universidad de Antofagasta; Chile Fil: Morales, P.. Universidad de Antofagasta; Chile Fil: Perez Martinez, Silvina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Díaz, E.S.. Universidad de Antofagasta; Chile |
description |
STUDY QUESTION Does fibronectin (Fn) stimulate the sperm capacitation process in humans? SUMMARY ANSWER Fibronectin stimulates human sperm capacitation. WHAT IS KNOWN ALREADY Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity. Fibronectin is a glycoprotein that is present in the fluid and the oviduct epithelium, and its receptor (alpha 5 beta 1 integrin) is present in human sperm. When alpha 5 beta 1 (α5β1) integrin binds to fibronectin, intracellular signals similar to the process of sperm capacitation are activated. STUDY DESIGN, SIZE, DURATION Human sperm were selected via a percoll gradient and were then incubated in non-capacitated medium (NCM) or reconstituted capacitated medium (RCM), in the presence or absence of fibronectin for different time periods. A total of 39 donors were used during the study, which lasted 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Freshly ejaculated sperm from healthy volunteers were obtained by masturbation. All semen samples were normal according to the World Health Organization parameters. Six approaches were used to determine the effects of fibronectin on sperm capacitation: chlortetracycline (CTC) assay, heterologous co-culture of human sperm with bovine oviductal epithelial cells (BOEC), measurement of cyclic (c) AMP levels, activity of protein kinase A (PKA), phosphorylation of proteins in tyrosine (Tyr) residues, and induction of acrosome reaction with progesterone. MAIN RESULTS AND THE ROLE OF CHANCE When sperm were incubated in RCM in the presence of Fn, we observed differences with respect to sperm incubated in RCM without Fn (control): (i) a 10% increase in the percentage of sperm with the B pattern (capacitated sperm) of CTC fluorescence from the beginning of capacitation (P < 0.001); (ii) an effect on both the concentration of cAMP (P < 0.05) and PKA activity (P < 0.05) during early capacitation; (iii) an increase in the degree of phosphorylation of proteins on tyrosine residues after 60 min of capacitation (P < 0.01); (iv) an increase in the percentage of acrosome-reacted sperm in response to progesterone (P < 0.05); and (v) a decrease in the percentage of sperm attached to BOEC (P < 0.05). Moreover, we noted that the effect of Fn was specific and mediated by alpha 5 beta 1 integrin (P < 0.001). Fn by itself had no effect on sperm capacitation. LIMITATIONS, REASONS FOR CAUTION This study was carried out with sperm from young adult men. Men with abnormal semen samples were excluded. The results cannot be directly extrapolated to other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS Currently, male subfertility has become a huge public health problem, which makes it imperative to develop new treatments. This is a novel discovery that extends our current knowledge concerning normal and pathological sperm physiology as well as events that regulate the process of fertilization. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182592 Martínez León, Eduardo Antonio; Osycka Salut, Claudia Elena; Signorelli, J.; Pozo, P.; Pérez, B.; et al.; Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway; Oxford University Press; Human Reproduction; 30; 9; 9-2015; 2138-2151 0268-1161 1460-2350 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182592 |
identifier_str_mv |
Martínez León, Eduardo Antonio; Osycka Salut, Claudia Elena; Signorelli, J.; Pozo, P.; Pérez, B.; et al.; Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway; Oxford University Press; Human Reproduction; 30; 9; 9-2015; 2138-2151 0268-1161 1460-2350 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ri.conicet.gov.ar/handle/11336/96702 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/humrep/article/30/9/2138/621893 info:eu-repo/semantics/altIdentifier/doi/10.1093/humrep/dev154 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083045110579200 |
score |
13.22299 |