A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media
- Autores
- Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost.
Fil: Rangel, Rafael. Universidad Politécnica de Catalunya; España
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Oñate, Eugenio. Universidad Politécnica de Catalunya; España
Fil: Franci, Alessandro. Universidad Politécnica de Catalunya; España - Materia
-
Granular materials
Thermal behavior
Hierarchical multiscale
Continuum–discrete modeling
Machine-learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258291
Ver los metadatos del registro completo
id |
CONICETDig_9acd40b76e2f5b7723b11daff0457703 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular mediaRangel, RafaelGimenez, Juan MarceloOñate, EugenioFranci, AlessandroGranular materialsThermal behaviorHierarchical multiscaleContinuum–discrete modelingMachine-learninghttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost.Fil: Rangel, Rafael. Universidad Politécnica de Catalunya; EspañaFil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Oñate, Eugenio. Universidad Politécnica de Catalunya; EspañaFil: Franci, Alessandro. Universidad Politécnica de Catalunya; EspañaElsevier2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258291Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro; A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media; Elsevier; Computers And Geotechnics; 168; 2-2024; 1-130266-352XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compgeo.2024.106118info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:09Zoai:ri.conicet.gov.ar:11336/258291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:10.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
title |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
spellingShingle |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media Rangel, Rafael Granular materials Thermal behavior Hierarchical multiscale Continuum–discrete modeling Machine-learning |
title_short |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
title_full |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
title_fullStr |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
title_full_unstemmed |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
title_sort |
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media |
dc.creator.none.fl_str_mv |
Rangel, Rafael Gimenez, Juan Marcelo Oñate, Eugenio Franci, Alessandro |
author |
Rangel, Rafael |
author_facet |
Rangel, Rafael Gimenez, Juan Marcelo Oñate, Eugenio Franci, Alessandro |
author_role |
author |
author2 |
Gimenez, Juan Marcelo Oñate, Eugenio Franci, Alessandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Granular materials Thermal behavior Hierarchical multiscale Continuum–discrete modeling Machine-learning |
topic |
Granular materials Thermal behavior Hierarchical multiscale Continuum–discrete modeling Machine-learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost. Fil: Rangel, Rafael. Universidad Politécnica de Catalunya; España Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Oñate, Eugenio. Universidad Politécnica de Catalunya; España Fil: Franci, Alessandro. Universidad Politécnica de Catalunya; España |
description |
This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258291 Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro; A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media; Elsevier; Computers And Geotechnics; 168; 2-2024; 1-13 0266-352X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258291 |
identifier_str_mv |
Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro; A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media; Elsevier; Computers And Geotechnics; 168; 2-2024; 1-13 0266-352X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compgeo.2024.106118 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613092677255168 |
score |
13.070432 |