A categorical construction for the computational definition of vector spaces
- Autores
- Díaz Caro, Alejandro; Malherbe, Octavio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.
Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Malherbe, Octavio. Universidad de la Republica. Facultad de Ingeniería; Uruguay - Materia
-
ALGEBRAIC LAMBDA-CALCULUS
CATEGORICAL SEMANTICS
QUANTUM COMPUTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141616
Ver los metadatos del registro completo
id |
CONICETDig_9a72a1f955d689fa1a33b9d1b8b26349 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A categorical construction for the computational definition of vector spacesDíaz Caro, AlejandroMalherbe, OctavioALGEBRAIC LAMBDA-CALCULUSCATEGORICAL SEMANTICSQUANTUM COMPUTINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Malherbe, Octavio. Universidad de la Republica. Facultad de Ingeniería; UruguaySpringer2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141616Díaz Caro, Alejandro; Malherbe, Octavio; A categorical construction for the computational definition of vector spaces; Springer; Applied Categorical Structures; 28; 5; 10-2020; 807-8440927-2852CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10485-020-09598-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10485-020-09598-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.01305info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:26Zoai:ri.conicet.gov.ar:11336/141616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:27.052CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A categorical construction for the computational definition of vector spaces |
title |
A categorical construction for the computational definition of vector spaces |
spellingShingle |
A categorical construction for the computational definition of vector spaces Díaz Caro, Alejandro ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
title_short |
A categorical construction for the computational definition of vector spaces |
title_full |
A categorical construction for the computational definition of vector spaces |
title_fullStr |
A categorical construction for the computational definition of vector spaces |
title_full_unstemmed |
A categorical construction for the computational definition of vector spaces |
title_sort |
A categorical construction for the computational definition of vector spaces |
dc.creator.none.fl_str_mv |
Díaz Caro, Alejandro Malherbe, Octavio |
author |
Díaz Caro, Alejandro |
author_facet |
Díaz Caro, Alejandro Malherbe, Octavio |
author_role |
author |
author2 |
Malherbe, Octavio |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
topic |
ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning. Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Malherbe, Octavio. Universidad de la Republica. Facultad de Ingeniería; Uruguay |
description |
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141616 Díaz Caro, Alejandro; Malherbe, Octavio; A categorical construction for the computational definition of vector spaces; Springer; Applied Categorical Structures; 28; 5; 10-2020; 807-844 0927-2852 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141616 |
identifier_str_mv |
Díaz Caro, Alejandro; Malherbe, Octavio; A categorical construction for the computational definition of vector spaces; Springer; Applied Categorical Structures; 28; 5; 10-2020; 807-844 0927-2852 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10485-020-09598-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10485-020-09598-7 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.01305 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981235724386304 |
score |
12.48226 |