The vectorial λ-calculus
- Autores
- Arrighi, Pablo; Díaz Caro, Alejandro; Valiron, Benoît
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.
Fil: Arrighi, Pablo. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Díaz Caro, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Valiron, Benoît. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Université Paris-Saclay; Francia - Materia
-
Lambda calculus
Type theory
Quantum computing - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72528
Ver los metadatos del registro completo
id |
CONICETDig_430623bcc15b9ecd8a34f3195d79f2d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72528 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The vectorial λ-calculusArrighi, PabloDíaz Caro, AlejandroValiron, BenoîtLambda calculusType theoryQuantum computinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.Fil: Arrighi, Pablo. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; FranciaFil: Díaz Caro, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Valiron, Benoît. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Université Paris-Saclay; FranciaAcademic Press Inc Elsevier Science2017-06info:eu-repo/date/embargoEnd/2019-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72528Arrighi, Pablo; Díaz Caro, Alejandro; Valiron, Benoît; The vectorial λ-calculus; Academic Press Inc Elsevier Science; Information and Computation; 254; Parte 1; 6-2017; 105-1390890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540117300482info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2017.04.001info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1308.1138info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:59Zoai:ri.conicet.gov.ar:11336/72528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:59.975CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The vectorial λ-calculus |
title |
The vectorial λ-calculus |
spellingShingle |
The vectorial λ-calculus Arrighi, Pablo Lambda calculus Type theory Quantum computing |
title_short |
The vectorial λ-calculus |
title_full |
The vectorial λ-calculus |
title_fullStr |
The vectorial λ-calculus |
title_full_unstemmed |
The vectorial λ-calculus |
title_sort |
The vectorial λ-calculus |
dc.creator.none.fl_str_mv |
Arrighi, Pablo Díaz Caro, Alejandro Valiron, Benoît |
author |
Arrighi, Pablo |
author_facet |
Arrighi, Pablo Díaz Caro, Alejandro Valiron, Benoît |
author_role |
author |
author2 |
Díaz Caro, Alejandro Valiron, Benoît |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Lambda calculus Type theory Quantum computing |
topic |
Lambda calculus Type theory Quantum computing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus. Fil: Arrighi, Pablo. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia Fil: Díaz Caro, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Valiron, Benoît. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Université Paris-Saclay; Francia |
description |
We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 info:eu-repo/date/embargoEnd/2019-07-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72528 Arrighi, Pablo; Díaz Caro, Alejandro; Valiron, Benoît; The vectorial λ-calculus; Academic Press Inc Elsevier Science; Information and Computation; 254; Parte 1; 6-2017; 105-139 0890-5401 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72528 |
identifier_str_mv |
Arrighi, Pablo; Díaz Caro, Alejandro; Valiron, Benoît; The vectorial λ-calculus; Academic Press Inc Elsevier Science; Information and Computation; 254; Parte 1; 6-2017; 105-139 0890-5401 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540117300482 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2017.04.001 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1308.1138 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268767203098624 |
score |
13.13397 |