The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application
- Autores
- Toropov, Andrei A.; Toropova, Alla P.; Veselinovic, Alexander M.; Veselinovic, Jovana B.; Nesmerak, Karel; Raska, Ivan, J.; Duchowicz, Pablo Román; Castro, Eduardo Alberto; Kudyshkin, Valentin O.; Lleszczynska, Danuta; Leszczynski, Jerzy
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The theoretical predictions of endpoints related to nanomaterials are attractive and moreefficient alternatives for their experimental determinations. Such type of calculations for the "usual"substances (i.e. non nanomaterials) can be carried out with molecular graphs. However, in the case ofnanomaterials, descriptors traditionally used for the quantitative structure - property/activityrelationships (QSPRs/QSARs) do not provide reliable results since the molecular structure ofnanomaterials, as a rule, cannot be expressed by the molecular graph. Innovative principles ofcomputational prediction of endpoints related to nanomaterials extracted from available eclectic data(technological attributes, conditions of the synthesis, etc.) are suggested, applied to two different sets of data, anddiscussed in this work.
Fil: Toropov, Andrei A.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; Italia
Fil: Toropova, Alla P.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; Italia
Fil: Veselinovic, Alexander M.. University of Nis; Serbia
Fil: Veselinovic, Jovana B.. University of Nis; Serbia
Fil: Nesmerak, Karel. Charles University in Prague. Faculty of Science; República Checa
Fil: Raska, Ivan, J.. Charles University in Prague. 3rd Department of Medicine; República Checa
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina
Fil: Kudyshkin, Valentin O.. Uzbek Academy of Sciences; Uzbekistán
Fil: Lleszczynska, Danuta. Jackson State University; Estados Unidos
Fil: Leszczynski, Jerzy. Jackson State University; Estados Unidos - Materia
-
Teoria Qsar
Coral
Descriptores Moleculares
Nanomateriales
Optimal Descriptor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5079
Ver los metadatos del registro completo
id |
CONICETDig_9a1f25d507be1528139b2647fe8d99b7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5079 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of ApplicationToropov, Andrei A.Toropova, Alla P.Veselinovic, Alexander M.Veselinovic, Jovana B.Nesmerak, KarelRaska, Ivan, J.Duchowicz, Pablo RománCastro, Eduardo AlbertoKudyshkin, Valentin O.Lleszczynska, DanutaLeszczynski, JerzyTeoria QsarCoralDescriptores MolecularesNanomaterialesOptimal Descriptorhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The theoretical predictions of endpoints related to nanomaterials are attractive and moreefficient alternatives for their experimental determinations. Such type of calculations for the "usual"substances (i.e. non nanomaterials) can be carried out with molecular graphs. However, in the case ofnanomaterials, descriptors traditionally used for the quantitative structure - property/activityrelationships (QSPRs/QSARs) do not provide reliable results since the molecular structure ofnanomaterials, as a rule, cannot be expressed by the molecular graph. Innovative principles ofcomputational prediction of endpoints related to nanomaterials extracted from available eclectic data(technological attributes, conditions of the synthesis, etc.) are suggested, applied to two different sets of data, anddiscussed in this work.Fil: Toropov, Andrei A.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; ItaliaFil: Toropova, Alla P.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; ItaliaFil: Veselinovic, Alexander M.. University of Nis; SerbiaFil: Veselinovic, Jovana B.. University of Nis; SerbiaFil: Nesmerak, Karel. Charles University in Prague. Faculty of Science; República ChecaFil: Raska, Ivan, J.. Charles University in Prague. 3rd Department of Medicine; República ChecaFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; ArgentinaFil: Kudyshkin, Valentin O.. Uzbek Academy of Sciences; UzbekistánFil: Lleszczynska, Danuta. Jackson State University; Estados UnidosFil: Leszczynski, Jerzy. Jackson State University; Estados UnidosBentham Science Publishers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5079Toropov, Andrei A.; Toropova, Alla P.; Veselinovic, Alexander M.; Veselinovic, Jovana B.; Nesmerak, Karel; et al.; The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application; Bentham Science Publishers; Combinatorial Chemistry & High Throughput Screening; 4; 18; 3-2015; 376-3861386-2073enginfo:eu-repo/semantics/altIdentifier/pmid/25747446info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/ben/cchts/2015/00000018/00000004/art00006info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/129189/articleinfo:eu-repo/semantics/altIdentifier/doi//10.2174/1386207318666150305125044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:49Zoai:ri.conicet.gov.ar:11336/5079instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:49.932CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
title |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
spellingShingle |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application Toropov, Andrei A. Teoria Qsar Coral Descriptores Moleculares Nanomateriales Optimal Descriptor |
title_short |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
title_full |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
title_fullStr |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
title_full_unstemmed |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
title_sort |
The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application |
dc.creator.none.fl_str_mv |
Toropov, Andrei A. Toropova, Alla P. Veselinovic, Alexander M. Veselinovic, Jovana B. Nesmerak, Karel Raska, Ivan, J. Duchowicz, Pablo Román Castro, Eduardo Alberto Kudyshkin, Valentin O. Lleszczynska, Danuta Leszczynski, Jerzy |
author |
Toropov, Andrei A. |
author_facet |
Toropov, Andrei A. Toropova, Alla P. Veselinovic, Alexander M. Veselinovic, Jovana B. Nesmerak, Karel Raska, Ivan, J. Duchowicz, Pablo Román Castro, Eduardo Alberto Kudyshkin, Valentin O. Lleszczynska, Danuta Leszczynski, Jerzy |
author_role |
author |
author2 |
Toropova, Alla P. Veselinovic, Alexander M. Veselinovic, Jovana B. Nesmerak, Karel Raska, Ivan, J. Duchowicz, Pablo Román Castro, Eduardo Alberto Kudyshkin, Valentin O. Lleszczynska, Danuta Leszczynski, Jerzy |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Teoria Qsar Coral Descriptores Moleculares Nanomateriales Optimal Descriptor |
topic |
Teoria Qsar Coral Descriptores Moleculares Nanomateriales Optimal Descriptor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The theoretical predictions of endpoints related to nanomaterials are attractive and moreefficient alternatives for their experimental determinations. Such type of calculations for the "usual"substances (i.e. non nanomaterials) can be carried out with molecular graphs. However, in the case ofnanomaterials, descriptors traditionally used for the quantitative structure - property/activityrelationships (QSPRs/QSARs) do not provide reliable results since the molecular structure ofnanomaterials, as a rule, cannot be expressed by the molecular graph. Innovative principles ofcomputational prediction of endpoints related to nanomaterials extracted from available eclectic data(technological attributes, conditions of the synthesis, etc.) are suggested, applied to two different sets of data, anddiscussed in this work. Fil: Toropov, Andrei A.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; Italia Fil: Toropova, Alla P.. IRCCS. Istituto di Ricerche Farmacologiche Mario Negri; Italia Fil: Veselinovic, Alexander M.. University of Nis; Serbia Fil: Veselinovic, Jovana B.. University of Nis; Serbia Fil: Nesmerak, Karel. Charles University in Prague. Faculty of Science; República Checa Fil: Raska, Ivan, J.. Charles University in Prague. 3rd Department of Medicine; República Checa Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de la Plata; Argentina Fil: Kudyshkin, Valentin O.. Uzbek Academy of Sciences; Uzbekistán Fil: Lleszczynska, Danuta. Jackson State University; Estados Unidos Fil: Leszczynski, Jerzy. Jackson State University; Estados Unidos |
description |
The theoretical predictions of endpoints related to nanomaterials are attractive and moreefficient alternatives for their experimental determinations. Such type of calculations for the "usual"substances (i.e. non nanomaterials) can be carried out with molecular graphs. However, in the case ofnanomaterials, descriptors traditionally used for the quantitative structure - property/activityrelationships (QSPRs/QSARs) do not provide reliable results since the molecular structure ofnanomaterials, as a rule, cannot be expressed by the molecular graph. Innovative principles ofcomputational prediction of endpoints related to nanomaterials extracted from available eclectic data(technological attributes, conditions of the synthesis, etc.) are suggested, applied to two different sets of data, anddiscussed in this work. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5079 Toropov, Andrei A.; Toropova, Alla P.; Veselinovic, Alexander M.; Veselinovic, Jovana B.; Nesmerak, Karel; et al.; The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application; Bentham Science Publishers; Combinatorial Chemistry & High Throughput Screening; 4; 18; 3-2015; 376-386 1386-2073 |
url |
http://hdl.handle.net/11336/5079 |
identifier_str_mv |
Toropov, Andrei A.; Toropova, Alla P.; Veselinovic, Alexander M.; Veselinovic, Jovana B.; Nesmerak, Karel; et al.; The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application; Bentham Science Publishers; Combinatorial Chemistry & High Throughput Screening; 4; 18; 3-2015; 376-386 1386-2073 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/pmid/25747446 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/ben/cchts/2015/00000018/00000004/art00006 info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/129189/article info:eu-repo/semantics/altIdentifier/doi//10.2174/1386207318666150305125044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers |
publisher.none.fl_str_mv |
Bentham Science Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270019554115584 |
score |
13.13397 |