A new numerical method for stiff differential equations

Autores
Boroni, Gustavo Adolfo; Clausse, Alejandro; Lotito, Pablo Andres
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new class of multistep methods for stiff ordinary differential equations is presented. The method is based in the application of estimation functions for the derivatives and the state variables, allowing the transformation of the original system in a purely algebraic system using the solutions of previous steps. From this point of view these methods adopt a semi-implicit scheme. The novelty introduced is an adaptive formula for the estimation function coefficients, deduced from a combined analysis of stability and convergence order. That is, the estimation function coefficients are recomputed at each time step. The convergence order of the resulting scheme is better than the equivalent linear multistep methods, while preserving the properties of stability.
Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica; Argentina
Materia
MULTISTEP METHODS
A-STABILITY
CONVERGENCE ORDER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114873

id CONICETDig_9a1d4c0e9092e4e771a0d03fac1c2922
oai_identifier_str oai:ri.conicet.gov.ar:11336/114873
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new numerical method for stiff differential equationsBoroni, Gustavo AdolfoClausse, AlejandroLotito, Pablo AndresMULTISTEP METHODSA-STABILITYCONVERGENCE ORDERhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2A new class of multistep methods for stiff ordinary differential equations is presented. The method is based in the application of estimation functions for the derivatives and the state variables, allowing the transformation of the original system in a purely algebraic system using the solutions of previous steps. From this point of view these methods adopt a semi-implicit scheme. The novelty introduced is an adaptive formula for the estimation function coefficients, deduced from a combined analysis of stability and convergence order. That is, the estimation function coefficients are recomputed at each time step. The convergence order of the resulting scheme is better than the equivalent linear multistep methods, while preserving the properties of stability.Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica; ArgentinaPlanta Piloto de Ingeniería Química2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114873Boroni, Gustavo Adolfo; Clausse, Alejandro; Lotito, Pablo Andres; A new numerical method for stiff differential equations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 39; 1; 12-2009; 53-560327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v3901/Vol_39_1_p53.pdfinfo:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i39_01.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:49:09Zoai:ri.conicet.gov.ar:11336/114873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:49:09.838CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new numerical method for stiff differential equations
title A new numerical method for stiff differential equations
spellingShingle A new numerical method for stiff differential equations
Boroni, Gustavo Adolfo
MULTISTEP METHODS
A-STABILITY
CONVERGENCE ORDER
title_short A new numerical method for stiff differential equations
title_full A new numerical method for stiff differential equations
title_fullStr A new numerical method for stiff differential equations
title_full_unstemmed A new numerical method for stiff differential equations
title_sort A new numerical method for stiff differential equations
dc.creator.none.fl_str_mv Boroni, Gustavo Adolfo
Clausse, Alejandro
Lotito, Pablo Andres
author Boroni, Gustavo Adolfo
author_facet Boroni, Gustavo Adolfo
Clausse, Alejandro
Lotito, Pablo Andres
author_role author
author2 Clausse, Alejandro
Lotito, Pablo Andres
author2_role author
author
dc.subject.none.fl_str_mv MULTISTEP METHODS
A-STABILITY
CONVERGENCE ORDER
topic MULTISTEP METHODS
A-STABILITY
CONVERGENCE ORDER
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A new class of multistep methods for stiff ordinary differential equations is presented. The method is based in the application of estimation functions for the derivatives and the state variables, allowing the transformation of the original system in a purely algebraic system using the solutions of previous steps. From this point of view these methods adopt a semi-implicit scheme. The novelty introduced is an adaptive formula for the estimation function coefficients, deduced from a combined analysis of stability and convergence order. That is, the estimation function coefficients are recomputed at each time step. The convergence order of the resulting scheme is better than the equivalent linear multistep methods, while preserving the properties of stability.
Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica; Argentina
description A new class of multistep methods for stiff ordinary differential equations is presented. The method is based in the application of estimation functions for the derivatives and the state variables, allowing the transformation of the original system in a purely algebraic system using the solutions of previous steps. From this point of view these methods adopt a semi-implicit scheme. The novelty introduced is an adaptive formula for the estimation function coefficients, deduced from a combined analysis of stability and convergence order. That is, the estimation function coefficients are recomputed at each time step. The convergence order of the resulting scheme is better than the equivalent linear multistep methods, while preserving the properties of stability.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114873
Boroni, Gustavo Adolfo; Clausse, Alejandro; Lotito, Pablo Andres; A new numerical method for stiff differential equations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 39; 1; 12-2009; 53-56
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114873
identifier_str_mv Boroni, Gustavo Adolfo; Clausse, Alejandro; Lotito, Pablo Andres; A new numerical method for stiff differential equations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 39; 1; 12-2009; 53-56
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v3901/Vol_39_1_p53.pdf
info:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i39_01.htm
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083013383815168
score 13.22299