New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents

Autores
Valino, Ana Laura; Iribarren, Adolfo Marcelo; Lewkowicz, Elizabeth Sandra
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Since the preparation of nucleoside 5′-diphosphates by classical methodologies is complex, multistep enzymatic systems were explored to synthesize pyrimidine nucleoside 5′-diphosphates starting from readily available reagents. Different strategies were combined to prepare uridine- and thymidine 5′-diphosphates as ribo- and deoxyribonucleoside models, respectively. For uridine 5′-diphosphate synthesis, conversions between 38 and 66% were achieved, using a simple methodology that involves commercial yeast extract as biocatalyst and biocatalytically in situ prepared uridine 5′-monophosphate. Corynebacterium ammoniagenes ATCC 19350 was used for the first time as biocatalyst to synthesize uridine 5′-monophosphate from uracil and orotic acid while Raoultella planticola was the selected biocatalyst for uridine 5′-monophosphate synthesis from uridine. The overall performances of all the tested approaches were similar but the use of uracil leads to a more suitable and cheaper process. Alternatively, for thymidine 5′-diphosphate synthesis two consecutive one pot multistep enzyme systems were assayed. In the first biotransformation, 2′-deoxyribose 5-phosphate was formed from glucose by Erwinia carotovora whole cells followed by the action of phosphopentomutase and thymidine phosphorylase affording thymidine in 85% conversion relative to 2′-deoxyribose 5-phosphate. Finally, in the second one pot reaction, the nucleoside was converted to thymidine 5′-diphosphate by the combined action of Escherichia coli BL21 pET22b-phoRp and Saccharomyces cerevisiae.
Fil: Valino, Ana Laura. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Iribarren, Adolfo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Lewkowicz, Elizabeth Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; Argentina
Materia
Multistep Enzymatic Synthesis
Nucleoside 5′-Diphosphate
Nucleoside 5′-Monophosphate
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37685

id CONICETDig_8a060d26dd28445194af4d323ce760fb
oai_identifier_str oai:ri.conicet.gov.ar:11336/37685
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagentsValino, Ana LauraIribarren, Adolfo MarceloLewkowicz, Elizabeth SandraMultistep Enzymatic SynthesisNucleoside 5′-DiphosphateNucleoside 5′-Monophosphatehttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Since the preparation of nucleoside 5′-diphosphates by classical methodologies is complex, multistep enzymatic systems were explored to synthesize pyrimidine nucleoside 5′-diphosphates starting from readily available reagents. Different strategies were combined to prepare uridine- and thymidine 5′-diphosphates as ribo- and deoxyribonucleoside models, respectively. For uridine 5′-diphosphate synthesis, conversions between 38 and 66% were achieved, using a simple methodology that involves commercial yeast extract as biocatalyst and biocatalytically in situ prepared uridine 5′-monophosphate. Corynebacterium ammoniagenes ATCC 19350 was used for the first time as biocatalyst to synthesize uridine 5′-monophosphate from uracil and orotic acid while Raoultella planticola was the selected biocatalyst for uridine 5′-monophosphate synthesis from uridine. The overall performances of all the tested approaches were similar but the use of uracil leads to a more suitable and cheaper process. Alternatively, for thymidine 5′-diphosphate synthesis two consecutive one pot multistep enzyme systems were assayed. In the first biotransformation, 2′-deoxyribose 5-phosphate was formed from glucose by Erwinia carotovora whole cells followed by the action of phosphopentomutase and thymidine phosphorylase affording thymidine in 85% conversion relative to 2′-deoxyribose 5-phosphate. Finally, in the second one pot reaction, the nucleoside was converted to thymidine 5′-diphosphate by the combined action of Escherichia coli BL21 pET22b-phoRp and Saccharomyces cerevisiae.Fil: Valino, Ana Laura. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Iribarren, Adolfo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lewkowicz, Elizabeth Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; ArgentinaElsevier Science2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37685Valino, Ana Laura; Iribarren, Adolfo Marcelo; Lewkowicz, Elizabeth Sandra; New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents; Elsevier Science; Journal of Molecular Catalysis B: Enzymatic; 114; 4-2015; 58-641381-1177CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcatb.2014.12.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1381117714003233info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:01:17Zoai:ri.conicet.gov.ar:11336/37685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:01:18.104CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
title New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
spellingShingle New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
Valino, Ana Laura
Multistep Enzymatic Synthesis
Nucleoside 5′-Diphosphate
Nucleoside 5′-Monophosphate
title_short New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
title_full New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
title_fullStr New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
title_full_unstemmed New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
title_sort New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents
dc.creator.none.fl_str_mv Valino, Ana Laura
Iribarren, Adolfo Marcelo
Lewkowicz, Elizabeth Sandra
author Valino, Ana Laura
author_facet Valino, Ana Laura
Iribarren, Adolfo Marcelo
Lewkowicz, Elizabeth Sandra
author_role author
author2 Iribarren, Adolfo Marcelo
Lewkowicz, Elizabeth Sandra
author2_role author
author
dc.subject.none.fl_str_mv Multistep Enzymatic Synthesis
Nucleoside 5′-Diphosphate
Nucleoside 5′-Monophosphate
topic Multistep Enzymatic Synthesis
Nucleoside 5′-Diphosphate
Nucleoside 5′-Monophosphate
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Since the preparation of nucleoside 5′-diphosphates by classical methodologies is complex, multistep enzymatic systems were explored to synthesize pyrimidine nucleoside 5′-diphosphates starting from readily available reagents. Different strategies were combined to prepare uridine- and thymidine 5′-diphosphates as ribo- and deoxyribonucleoside models, respectively. For uridine 5′-diphosphate synthesis, conversions between 38 and 66% were achieved, using a simple methodology that involves commercial yeast extract as biocatalyst and biocatalytically in situ prepared uridine 5′-monophosphate. Corynebacterium ammoniagenes ATCC 19350 was used for the first time as biocatalyst to synthesize uridine 5′-monophosphate from uracil and orotic acid while Raoultella planticola was the selected biocatalyst for uridine 5′-monophosphate synthesis from uridine. The overall performances of all the tested approaches were similar but the use of uracil leads to a more suitable and cheaper process. Alternatively, for thymidine 5′-diphosphate synthesis two consecutive one pot multistep enzyme systems were assayed. In the first biotransformation, 2′-deoxyribose 5-phosphate was formed from glucose by Erwinia carotovora whole cells followed by the action of phosphopentomutase and thymidine phosphorylase affording thymidine in 85% conversion relative to 2′-deoxyribose 5-phosphate. Finally, in the second one pot reaction, the nucleoside was converted to thymidine 5′-diphosphate by the combined action of Escherichia coli BL21 pET22b-phoRp and Saccharomyces cerevisiae.
Fil: Valino, Ana Laura. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Iribarren, Adolfo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Lewkowicz, Elizabeth Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Area Química. Laboratorio de Biotransformaciones; Argentina
description Since the preparation of nucleoside 5′-diphosphates by classical methodologies is complex, multistep enzymatic systems were explored to synthesize pyrimidine nucleoside 5′-diphosphates starting from readily available reagents. Different strategies were combined to prepare uridine- and thymidine 5′-diphosphates as ribo- and deoxyribonucleoside models, respectively. For uridine 5′-diphosphate synthesis, conversions between 38 and 66% were achieved, using a simple methodology that involves commercial yeast extract as biocatalyst and biocatalytically in situ prepared uridine 5′-monophosphate. Corynebacterium ammoniagenes ATCC 19350 was used for the first time as biocatalyst to synthesize uridine 5′-monophosphate from uracil and orotic acid while Raoultella planticola was the selected biocatalyst for uridine 5′-monophosphate synthesis from uridine. The overall performances of all the tested approaches were similar but the use of uracil leads to a more suitable and cheaper process. Alternatively, for thymidine 5′-diphosphate synthesis two consecutive one pot multistep enzyme systems were assayed. In the first biotransformation, 2′-deoxyribose 5-phosphate was formed from glucose by Erwinia carotovora whole cells followed by the action of phosphopentomutase and thymidine phosphorylase affording thymidine in 85% conversion relative to 2′-deoxyribose 5-phosphate. Finally, in the second one pot reaction, the nucleoside was converted to thymidine 5′-diphosphate by the combined action of Escherichia coli BL21 pET22b-phoRp and Saccharomyces cerevisiae.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37685
Valino, Ana Laura; Iribarren, Adolfo Marcelo; Lewkowicz, Elizabeth Sandra; New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents; Elsevier Science; Journal of Molecular Catalysis B: Enzymatic; 114; 4-2015; 58-64
1381-1177
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37685
identifier_str_mv Valino, Ana Laura; Iribarren, Adolfo Marcelo; Lewkowicz, Elizabeth Sandra; New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents; Elsevier Science; Journal of Molecular Catalysis B: Enzymatic; 114; 4-2015; 58-64
1381-1177
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcatb.2014.12.004
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1381117714003233
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977456596680704
score 13.087074