Quantization-based new integration methods for stiff ordinary differential equations
- Autores
- Migoni, Gustavo Andres; Kofman, Ernesto Javier; Cellier, François
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal discretization method on state quantization instead of time slicing. These solvers have been coined quantized state system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method, called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS method, that is, on a stiff system solver based on state quantization.
Fil: Migoni, Gustavo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Cellier, François. Eidgenössische Technische Hochschule Zürich; Suiza - Materia
-
DISCRETE EVENT SYSTEM
QUANTIZED STATE SYSTEMS
STIFF SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186683
Ver los metadatos del registro completo
id |
CONICETDig_f6ce12a966fbc5dcba9343946df17fbe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186683 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantization-based new integration methods for stiff ordinary differential equationsMigoni, Gustavo AndresKofman, Ernesto JavierCellier, FrançoisDISCRETE EVENT SYSTEMQUANTIZED STATE SYSTEMSSTIFF SYSTEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal discretization method on state quantization instead of time slicing. These solvers have been coined quantized state system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method, called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS method, that is, on a stiff system solver based on state quantization.Fil: Migoni, Gustavo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Cellier, François. Eidgenössische Technische Hochschule Zürich; SuizaSage Publications Ltd2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186683Migoni, Gustavo Andres; Kofman, Ernesto Javier; Cellier, François; Quantization-based new integration methods for stiff ordinary differential equations; Sage Publications Ltd; Simulation; 88; 4; 4-2012; 387-4070037-5497CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://sim.sagepub.com/content/early/2011/06/07/0037549711403645.full.pdf+htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1177/0037549711403645info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:18Zoai:ri.conicet.gov.ar:11336/186683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:18.886CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantization-based new integration methods for stiff ordinary differential equations |
title |
Quantization-based new integration methods for stiff ordinary differential equations |
spellingShingle |
Quantization-based new integration methods for stiff ordinary differential equations Migoni, Gustavo Andres DISCRETE EVENT SYSTEM QUANTIZED STATE SYSTEMS STIFF SYSTEMS |
title_short |
Quantization-based new integration methods for stiff ordinary differential equations |
title_full |
Quantization-based new integration methods for stiff ordinary differential equations |
title_fullStr |
Quantization-based new integration methods for stiff ordinary differential equations |
title_full_unstemmed |
Quantization-based new integration methods for stiff ordinary differential equations |
title_sort |
Quantization-based new integration methods for stiff ordinary differential equations |
dc.creator.none.fl_str_mv |
Migoni, Gustavo Andres Kofman, Ernesto Javier Cellier, François |
author |
Migoni, Gustavo Andres |
author_facet |
Migoni, Gustavo Andres Kofman, Ernesto Javier Cellier, François |
author_role |
author |
author2 |
Kofman, Ernesto Javier Cellier, François |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DISCRETE EVENT SYSTEM QUANTIZED STATE SYSTEMS STIFF SYSTEMS |
topic |
DISCRETE EVENT SYSTEM QUANTIZED STATE SYSTEMS STIFF SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal discretization method on state quantization instead of time slicing. These solvers have been coined quantized state system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method, called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS method, that is, on a stiff system solver based on state quantization. Fil: Migoni, Gustavo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Cellier, François. Eidgenössische Technische Hochschule Zürich; Suiza |
description |
In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal discretization method on state quantization instead of time slicing. These solvers have been coined quantized state system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method, called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS method, that is, on a stiff system solver based on state quantization. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186683 Migoni, Gustavo Andres; Kofman, Ernesto Javier; Cellier, François; Quantization-based new integration methods for stiff ordinary differential equations; Sage Publications Ltd; Simulation; 88; 4; 4-2012; 387-407 0037-5497 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/186683 |
identifier_str_mv |
Migoni, Gustavo Andres; Kofman, Ernesto Javier; Cellier, François; Quantization-based new integration methods for stiff ordinary differential equations; Sage Publications Ltd; Simulation; 88; 4; 4-2012; 387-407 0037-5497 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://sim.sagepub.com/content/early/2011/06/07/0037549711403645.full.pdf+html info:eu-repo/semantics/altIdentifier/doi/10.1177/0037549711403645 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sage Publications Ltd |
publisher.none.fl_str_mv |
Sage Publications Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269952771358720 |
score |
13.13397 |