The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras
- Autores
- Larotonda, Gabriel Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a semi-finite von Neumann algebra A, we study the case of equality in Young´s inequality of s-numbers for a pair of τ-measurable operators a,b, and we prove that equality is only possible if |a|^p=|b|^q. We also extend the result to unbounded operators affiliated with A, and relate this problem with other symmetric norm Young inequalities.
Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
MEASURABLE OPERATOR
TAU-COMPACT OPERATOR
τ-COMPACT OPERATOR
SEMI-FINITE VON NEUMANN ALGEBRA
YOUNG´S INEQUALITY
S-NUMBERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108155
Ver los metadatos del registro completo
id |
CONICETDig_99ec615110a0426a371d201c213684db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108155 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebrasLarotonda, Gabriel AndrésMEASURABLE OPERATORTAU-COMPACT OPERATORτ-COMPACT OPERATORSEMI-FINITE VON NEUMANN ALGEBRAYOUNG´S INEQUALITYS-NUMBERShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a semi-finite von Neumann algebra A, we study the case of equality in Young´s inequality of s-numbers for a pair of τ-measurable operators a,b, and we prove that equality is only possible if |a|^p=|b|^q. We also extend the result to unbounded operators affiliated with A, and relate this problem with other symmetric norm Young inequalities.Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaTheta Foundation2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108155Larotonda, Gabriel Andrés; The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras; Theta Foundation; Journal Of Operator Theory; 81; 1; 7-2019; 157-1730379-4024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.htmlinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1706.07115info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:09:18Zoai:ri.conicet.gov.ar:11336/108155instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:09:19.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
title |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
spellingShingle |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras Larotonda, Gabriel Andrés MEASURABLE OPERATOR TAU-COMPACT OPERATOR τ-COMPACT OPERATOR SEMI-FINITE VON NEUMANN ALGEBRA YOUNG´S INEQUALITY S-NUMBERS |
title_short |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
title_full |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
title_fullStr |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
title_full_unstemmed |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
title_sort |
The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras |
dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés |
author |
Larotonda, Gabriel Andrés |
author_facet |
Larotonda, Gabriel Andrés |
author_role |
author |
dc.subject.none.fl_str_mv |
MEASURABLE OPERATOR TAU-COMPACT OPERATOR τ-COMPACT OPERATOR SEMI-FINITE VON NEUMANN ALGEBRA YOUNG´S INEQUALITY S-NUMBERS |
topic |
MEASURABLE OPERATOR TAU-COMPACT OPERATOR τ-COMPACT OPERATOR SEMI-FINITE VON NEUMANN ALGEBRA YOUNG´S INEQUALITY S-NUMBERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a semi-finite von Neumann algebra A, we study the case of equality in Young´s inequality of s-numbers for a pair of τ-measurable operators a,b, and we prove that equality is only possible if |a|^p=|b|^q. We also extend the result to unbounded operators affiliated with A, and relate this problem with other symmetric norm Young inequalities. Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
For a semi-finite von Neumann algebra A, we study the case of equality in Young´s inequality of s-numbers for a pair of τ-measurable operators a,b, and we prove that equality is only possible if |a|^p=|b|^q. We also extend the result to unbounded operators affiliated with A, and relate this problem with other symmetric norm Young inequalities. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108155 Larotonda, Gabriel Andrés; The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras; Theta Foundation; Journal Of Operator Theory; 81; 1; 7-2019; 157-173 0379-4024 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108155 |
identifier_str_mv |
Larotonda, Gabriel Andrés; The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras; Theta Foundation; Journal Of Operator Theory; 81; 1; 7-2019; 157-173 0379-4024 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.html info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1706.07115 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Theta Foundation |
publisher.none.fl_str_mv |
Theta Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781436235874304 |
score |
12.982451 |