Fisher zeros in the Kallen-Lehmann approach to 3D Ising model

Autores
Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston Enrique
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ = A+ / A-, within the 3.5% and 7% of the Monte Carlo predictions, respectively.
Fil: Astorino, Marco. Centro de Estudios Científicos; Chile. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Canfora, Fabrizio. Centro de Estudios Científicos; Chile
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
ISING MODEL
REGGE THEORY
SPIN GLASSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60725

id CONICETDig_99aa59420f6409d408190bd3f3c96be9
oai_identifier_str oai:ri.conicet.gov.ar:11336/60725
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fisher zeros in the Kallen-Lehmann approach to 3D Ising modelAstorino, MarcoCanfora, FabrizioGiribet, Gaston EnriqueISING MODELREGGE THEORYSPIN GLASSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ = A+ / A-, within the 3.5% and 7% of the Monte Carlo predictions, respectively.Fil: Astorino, Marco. Centro de Estudios Científicos; Chile. Pontificia Universidad Católica de Valparaíso; ChileFil: Canfora, Fabrizio. Centro de Estudios Científicos; ChileFil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Science2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60725Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston Enrique; Fisher zeros in the Kallen-Lehmann approach to 3D Ising model; Elsevier Science; Physics Letters B; 671; 2; 1-2009; 291-2970370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2008.11.066info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269308014627info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:28Zoai:ri.conicet.gov.ar:11336/60725instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:28.81CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
title Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
spellingShingle Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
Astorino, Marco
ISING MODEL
REGGE THEORY
SPIN GLASSES
title_short Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
title_full Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
title_fullStr Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
title_full_unstemmed Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
title_sort Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
dc.creator.none.fl_str_mv Astorino, Marco
Canfora, Fabrizio
Giribet, Gaston Enrique
author Astorino, Marco
author_facet Astorino, Marco
Canfora, Fabrizio
Giribet, Gaston Enrique
author_role author
author2 Canfora, Fabrizio
Giribet, Gaston Enrique
author2_role author
author
dc.subject.none.fl_str_mv ISING MODEL
REGGE THEORY
SPIN GLASSES
topic ISING MODEL
REGGE THEORY
SPIN GLASSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ = A+ / A-, within the 3.5% and 7% of the Monte Carlo predictions, respectively.
Fil: Astorino, Marco. Centro de Estudios Científicos; Chile. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Canfora, Fabrizio. Centro de Estudios Científicos; Chile
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ = A+ / A-, within the 3.5% and 7% of the Monte Carlo predictions, respectively.
publishDate 2009
dc.date.none.fl_str_mv 2009-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60725
Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston Enrique; Fisher zeros in the Kallen-Lehmann approach to 3D Ising model; Elsevier Science; Physics Letters B; 671; 2; 1-2009; 291-297
0370-2693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60725
identifier_str_mv Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston Enrique; Fisher zeros in the Kallen-Lehmann approach to 3D Ising model; Elsevier Science; Physics Letters B; 671; 2; 1-2009; 291-297
0370-2693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2008.11.066
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269308014627
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613505967194112
score 13.070432