Thermodynamic integration method applied to ±j Ising lattices

Autores
Romá, Federico José; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Vogel, Eugenio E.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Square lattices with Ising spins at the sites and ±J exchange interactions between nearest neighbors are one of the realizations of the Edwards-Anderson model originally proposed to mimic spin glasses. Such systems produce a complex configuration space due to frustration originated in local competing fields. Reaching exact results for physical parameters is limited to the ground states of small systems. Due to this complexity it is unavoidable to use numerical methods subject to controlled error to attempt a good approximation for large enough systems. Here we make use of the thermodynamic integration method to obtain energy and remnant entropy for lattices 20×20 with variable concentration x of ferromagnetic bonds. It turns out that both energy and entropy reach their minima at x=0.0 and 1.0 growing towards the symmetric point x=0.5 in a similar way, leading to an almost linear relationship between entropy and energy.
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vogel, Eugenio E.. Universidad de La Frontera; Chile
Materia
±J ISING LATTICES
COMPUTATIONAL SIMULATION
SPIN GLASSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141655

id CONICETDig_b0026b85a3cf847c43d0558a762f5930
oai_identifier_str oai:ri.conicet.gov.ar:11336/141655
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamic integration method applied to ±j Ising latticesRomá, Federico JoséNieto Quintas, Felix DanielRamirez Pastor, Antonio JoseVogel, Eugenio E.±J ISING LATTICESCOMPUTATIONAL SIMULATIONSPIN GLASSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Square lattices with Ising spins at the sites and ±J exchange interactions between nearest neighbors are one of the realizations of the Edwards-Anderson model originally proposed to mimic spin glasses. Such systems produce a complex configuration space due to frustration originated in local competing fields. Reaching exact results for physical parameters is limited to the ground states of small systems. Due to this complexity it is unavoidable to use numerical methods subject to controlled error to attempt a good approximation for large enough systems. Here we make use of the thermodynamic integration method to obtain energy and remnant entropy for lattices 20×20 with variable concentration x of ferromagnetic bonds. It turns out that both energy and entropy reach their minima at x=0.0 and 1.0 growing towards the symmetric point x=0.5 in a similar way, leading to an almost linear relationship between entropy and energy.Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Vogel, Eugenio E.. Universidad de La Frontera; ChileElsevier Science2005-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141655Romá, Federico José; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Vogel, Eugenio E.; Thermodynamic integration method applied to ±j Ising lattices; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 348; 15-3-2005; 216-2220378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437104012221info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2004.09.023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:59Zoai:ri.conicet.gov.ar:11336/141655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:59.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamic integration method applied to ±j Ising lattices
title Thermodynamic integration method applied to ±j Ising lattices
spellingShingle Thermodynamic integration method applied to ±j Ising lattices
Romá, Federico José
±J ISING LATTICES
COMPUTATIONAL SIMULATION
SPIN GLASSES
title_short Thermodynamic integration method applied to ±j Ising lattices
title_full Thermodynamic integration method applied to ±j Ising lattices
title_fullStr Thermodynamic integration method applied to ±j Ising lattices
title_full_unstemmed Thermodynamic integration method applied to ±j Ising lattices
title_sort Thermodynamic integration method applied to ±j Ising lattices
dc.creator.none.fl_str_mv Romá, Federico José
Nieto Quintas, Felix Daniel
Ramirez Pastor, Antonio Jose
Vogel, Eugenio E.
author Romá, Federico José
author_facet Romá, Federico José
Nieto Quintas, Felix Daniel
Ramirez Pastor, Antonio Jose
Vogel, Eugenio E.
author_role author
author2 Nieto Quintas, Felix Daniel
Ramirez Pastor, Antonio Jose
Vogel, Eugenio E.
author2_role author
author
author
dc.subject.none.fl_str_mv ±J ISING LATTICES
COMPUTATIONAL SIMULATION
SPIN GLASSES
topic ±J ISING LATTICES
COMPUTATIONAL SIMULATION
SPIN GLASSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Square lattices with Ising spins at the sites and ±J exchange interactions between nearest neighbors are one of the realizations of the Edwards-Anderson model originally proposed to mimic spin glasses. Such systems produce a complex configuration space due to frustration originated in local competing fields. Reaching exact results for physical parameters is limited to the ground states of small systems. Due to this complexity it is unavoidable to use numerical methods subject to controlled error to attempt a good approximation for large enough systems. Here we make use of the thermodynamic integration method to obtain energy and remnant entropy for lattices 20×20 with variable concentration x of ferromagnetic bonds. It turns out that both energy and entropy reach their minima at x=0.0 and 1.0 growing towards the symmetric point x=0.5 in a similar way, leading to an almost linear relationship between entropy and energy.
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vogel, Eugenio E.. Universidad de La Frontera; Chile
description Square lattices with Ising spins at the sites and ±J exchange interactions between nearest neighbors are one of the realizations of the Edwards-Anderson model originally proposed to mimic spin glasses. Such systems produce a complex configuration space due to frustration originated in local competing fields. Reaching exact results for physical parameters is limited to the ground states of small systems. Due to this complexity it is unavoidable to use numerical methods subject to controlled error to attempt a good approximation for large enough systems. Here we make use of the thermodynamic integration method to obtain energy and remnant entropy for lattices 20×20 with variable concentration x of ferromagnetic bonds. It turns out that both energy and entropy reach their minima at x=0.0 and 1.0 growing towards the symmetric point x=0.5 in a similar way, leading to an almost linear relationship between entropy and energy.
publishDate 2005
dc.date.none.fl_str_mv 2005-03-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141655
Romá, Federico José; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Vogel, Eugenio E.; Thermodynamic integration method applied to ±j Ising lattices; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 348; 15-3-2005; 216-222
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141655
identifier_str_mv Romá, Federico José; Nieto Quintas, Felix Daniel; Ramirez Pastor, Antonio Jose; Vogel, Eugenio E.; Thermodynamic integration method applied to ±j Ising lattices; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 348; 15-3-2005; 216-222
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437104012221
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2004.09.023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782529465483264
score 12.982451