Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures

Autores
Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; Seeböck, Philipp
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
Fil: Hofer, Dominik. Medizinische Universität Wien; Austria
Fil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; Austria
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; Austria
Fil: Goldbach, Felix. Medizinische Universität Wien; Austria
Fil: Gerendas, Bianca S.. Medizinische Universität Wien; Austria
Fil: Seeböck, Philipp. Medizinische Universität Wien; Austria
Materia
Image quality
Image resolution
Image noise
Laser scanning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216268

id CONICETDig_99a0ac927b270b582ad79e186d4248fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/216268
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus picturesHofer, DominikSchmidt Erfurth, UrsulaOrlando, José IgnacioGoldbach, FelixGerendas, Bianca S.Seeböck, PhilippImage qualityImage resolutionImage noiseLaser scanninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.Fil: Hofer, Dominik. Medizinische Universität Wien; AustriaFil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; AustriaFil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; AustriaFil: Goldbach, Felix. Medizinische Universität Wien; AustriaFil: Gerendas, Bianca S.. Medizinische Universität Wien; AustriaFil: Seeböck, Philipp. Medizinische Universität Wien; AustriaOptica Publishing Group2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216268Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-25802156-7085CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027info:eu-repo/semantics/altIdentifier/doi/10.1364/BOE.452873info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:49:00Zoai:ri.conicet.gov.ar:11336/216268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:49:00.648CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
title Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
spellingShingle Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
Hofer, Dominik
Image quality
Image resolution
Image noise
Laser scanning
title_short Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
title_full Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
title_fullStr Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
title_full_unstemmed Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
title_sort Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
dc.creator.none.fl_str_mv Hofer, Dominik
Schmidt Erfurth, Ursula
Orlando, José Ignacio
Goldbach, Felix
Gerendas, Bianca S.
Seeböck, Philipp
author Hofer, Dominik
author_facet Hofer, Dominik
Schmidt Erfurth, Ursula
Orlando, José Ignacio
Goldbach, Felix
Gerendas, Bianca S.
Seeböck, Philipp
author_role author
author2 Schmidt Erfurth, Ursula
Orlando, José Ignacio
Goldbach, Felix
Gerendas, Bianca S.
Seeböck, Philipp
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Image quality
Image resolution
Image noise
Laser scanning
topic Image quality
Image resolution
Image noise
Laser scanning
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
Fil: Hofer, Dominik. Medizinische Universität Wien; Austria
Fil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; Austria
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; Austria
Fil: Goldbach, Felix. Medizinische Universität Wien; Austria
Fil: Gerendas, Bianca S.. Medizinische Universität Wien; Austria
Fil: Seeböck, Philipp. Medizinische Universität Wien; Austria
description In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216268
Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580
2156-7085
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216268
identifier_str_mv Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580
2156-7085
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027
info:eu-repo/semantics/altIdentifier/doi/10.1364/BOE.452873
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optica Publishing Group
publisher.none.fl_str_mv Optica Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872700231647232
score 13.011256