Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures
- Autores
- Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; Seeböck, Philipp
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
Fil: Hofer, Dominik. Medizinische Universität Wien; Austria
Fil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; Austria
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; Austria
Fil: Goldbach, Felix. Medizinische Universität Wien; Austria
Fil: Gerendas, Bianca S.. Medizinische Universität Wien; Austria
Fil: Seeböck, Philipp. Medizinische Universität Wien; Austria - Materia
-
Image quality
Image resolution
Image noise
Laser scanning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216268
Ver los metadatos del registro completo
| id |
CONICETDig_99a0ac927b270b582ad79e186d4248fe |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216268 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus picturesHofer, DominikSchmidt Erfurth, UrsulaOrlando, José IgnacioGoldbach, FelixGerendas, Bianca S.Seeböck, PhilippImage qualityImage resolutionImage noiseLaser scanninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.Fil: Hofer, Dominik. Medizinische Universität Wien; AustriaFil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; AustriaFil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; AustriaFil: Goldbach, Felix. Medizinische Universität Wien; AustriaFil: Gerendas, Bianca S.. Medizinische Universität Wien; AustriaFil: Seeböck, Philipp. Medizinische Universität Wien; AustriaOptica Publishing Group2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216268Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-25802156-7085CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027info:eu-repo/semantics/altIdentifier/doi/10.1364/BOE.452873info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:49:00Zoai:ri.conicet.gov.ar:11336/216268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:49:00.648CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| title |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| spellingShingle |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures Hofer, Dominik Image quality Image resolution Image noise Laser scanning |
| title_short |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| title_full |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| title_fullStr |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| title_full_unstemmed |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| title_sort |
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures |
| dc.creator.none.fl_str_mv |
Hofer, Dominik Schmidt Erfurth, Ursula Orlando, José Ignacio Goldbach, Felix Gerendas, Bianca S. Seeböck, Philipp |
| author |
Hofer, Dominik |
| author_facet |
Hofer, Dominik Schmidt Erfurth, Ursula Orlando, José Ignacio Goldbach, Felix Gerendas, Bianca S. Seeböck, Philipp |
| author_role |
author |
| author2 |
Schmidt Erfurth, Ursula Orlando, José Ignacio Goldbach, Felix Gerendas, Bianca S. Seeböck, Philipp |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Image quality Image resolution Image noise Laser scanning |
| topic |
Image quality Image resolution Image noise Laser scanning |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations. Fil: Hofer, Dominik. Medizinische Universität Wien; Austria Fil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; Austria Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; Austria Fil: Goldbach, Felix. Medizinische Universität Wien; Austria Fil: Gerendas, Bianca S.. Medizinische Universität Wien; Austria Fil: Seeböck, Philipp. Medizinische Universität Wien; Austria |
| description |
In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216268 Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580 2156-7085 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/216268 |
| identifier_str_mv |
Hofer, Dominik; Schmidt Erfurth, Ursula; Orlando, José Ignacio; Goldbach, Felix; Gerendas, Bianca S.; et al.; Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures; Optica Publishing Group; Biomedical Optics Express; 13; 5; 4-2022; 2566-2580 2156-7085 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2566&id=471027 info:eu-repo/semantics/altIdentifier/doi/10.1364/BOE.452873 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Optica Publishing Group |
| publisher.none.fl_str_mv |
Optica Publishing Group |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872700231647232 |
| score |
13.011256 |