A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm
- Autores
- Baquela, Enrique Gabriel; Olivera, Ana Carolina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions; however, its high computational cost is a factor that can make its implementation infeasible. This issue also occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing the computational cost significantly without affecting the quality of the results obtained. The evolutionary part of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as computational cost saving.
Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
KRIGING
METAMODEL
MULTI-OBJECTIVE OPTIMIZATION
NSGA-II
OPTIMIZATION VIA SIMULATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124621
Ver los metadatos del registro completo
id |
CONICETDig_0b2633dd3e2b444276c36f4866d8e6a3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124621 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithmBaquela, Enrique GabrielOlivera, Ana CarolinaKRIGINGMETAMODELMULTI-OBJECTIVE OPTIMIZATIONNSGA-IIOPTIMIZATION VIA SIMULATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions; however, its high computational cost is a factor that can make its implementation infeasible. This issue also occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing the computational cost significantly without affecting the quality of the results obtained. The evolutionary part of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as computational cost saving.Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124621Baquela, Enrique Gabriel; Olivera, Ana Carolina; A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm; Elsevier; Operations Research Perspectives; 6; 100098; 1-2019; 1-142214-7160CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221471601830068Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.orp.2019.100098info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:32Zoai:ri.conicet.gov.ar:11336/124621instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:32.867CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
title |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
spellingShingle |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm Baquela, Enrique Gabriel KRIGING METAMODEL MULTI-OBJECTIVE OPTIMIZATION NSGA-II OPTIMIZATION VIA SIMULATION |
title_short |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
title_full |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
title_fullStr |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
title_full_unstemmed |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
title_sort |
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm |
dc.creator.none.fl_str_mv |
Baquela, Enrique Gabriel Olivera, Ana Carolina |
author |
Baquela, Enrique Gabriel |
author_facet |
Baquela, Enrique Gabriel Olivera, Ana Carolina |
author_role |
author |
author2 |
Olivera, Ana Carolina |
author2_role |
author |
dc.subject.none.fl_str_mv |
KRIGING METAMODEL MULTI-OBJECTIVE OPTIMIZATION NSGA-II OPTIMIZATION VIA SIMULATION |
topic |
KRIGING METAMODEL MULTI-OBJECTIVE OPTIMIZATION NSGA-II OPTIMIZATION VIA SIMULATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions; however, its high computational cost is a factor that can make its implementation infeasible. This issue also occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing the computational cost significantly without affecting the quality of the results obtained. The evolutionary part of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as computational cost saving. Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions; however, its high computational cost is a factor that can make its implementation infeasible. This issue also occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing the computational cost significantly without affecting the quality of the results obtained. The evolutionary part of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as computational cost saving. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124621 Baquela, Enrique Gabriel; Olivera, Ana Carolina; A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm; Elsevier; Operations Research Perspectives; 6; 100098; 1-2019; 1-14 2214-7160 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124621 |
identifier_str_mv |
Baquela, Enrique Gabriel; Olivera, Ana Carolina; A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm; Elsevier; Operations Research Perspectives; 6; 100098; 1-2019; 1-14 2214-7160 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221471601830068X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.orp.2019.100098 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269526905847808 |
score |
13.13397 |