Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires

Autores
Odella, Emmanuel; Mora, S. Jimena; Wadsworth, Brian L.; Goings, Joshua J.; Gervaldo, Miguel Andres; Sereno, Leonides Edmundo; Groy, Thomas L.; Gust, Devens; Moore, Thomas A.; Moore, Gary F.; Hammes Schiffer, Sharon; Moore, Ana L.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular "dry proton wires" with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.
Fil: Odella, Emmanuel. Arizona State University; Estados Unidos
Fil: Mora, S. Jimena. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Goings, Joshua J.. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos
Fil: Gust, Devens. Arizona State University; Estados Unidos
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes Schiffer, Sharon. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos
Materia
PROTON-COUPLED ELECTRON TRANSFER
BENZIMIDAZOLE-PHENOL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119647

id CONICETDig_99537470c3723f3aef492cf3d7443052
oai_identifier_str oai:ri.conicet.gov.ar:11336/119647
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wiresOdella, EmmanuelMora, S. JimenaWadsworth, Brian L.Goings, Joshua J.Gervaldo, Miguel AndresSereno, Leonides EdmundoGroy, Thomas L.Gust, DevensMoore, Thomas A.Moore, Gary F.Hammes Schiffer, SharonMoore, Ana L.PROTON-COUPLED ELECTRON TRANSFERBENZIMIDAZOLE-PHENOLhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular "dry proton wires" with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.Fil: Odella, Emmanuel. Arizona State University; Estados UnidosFil: Mora, S. Jimena. Arizona State University; Estados UnidosFil: Wadsworth, Brian L.. Arizona State University; Estados UnidosFil: Goings, Joshua J.. University of Yale. Yale School of Forestry & Environmental Studies; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Groy, Thomas L.. Arizona State University; Estados UnidosFil: Gust, Devens. Arizona State University; Estados UnidosFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Gary F.. Arizona State University; Estados UnidosFil: Hammes Schiffer, Sharon. University of Yale. Yale School of Forestry & Environmental Studies; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados UnidosRoyal Society of Chemistry2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119647Odella, Emmanuel; Mora, S. Jimena; Wadsworth, Brian L.; Goings, Joshua J.; Gervaldo, Miguel Andres; et al.; Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires; Royal Society of Chemistry; Chemical Science; 11; 15; 3-2020; 3820-38282041-6539CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C9SC06010Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:22Zoai:ri.conicet.gov.ar:11336/119647instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:22.79CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
title Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
spellingShingle Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
Odella, Emmanuel
PROTON-COUPLED ELECTRON TRANSFER
BENZIMIDAZOLE-PHENOL
title_short Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
title_full Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
title_fullStr Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
title_full_unstemmed Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
title_sort Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
dc.creator.none.fl_str_mv Odella, Emmanuel
Mora, S. Jimena
Wadsworth, Brian L.
Goings, Joshua J.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Groy, Thomas L.
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes Schiffer, Sharon
Moore, Ana L.
author Odella, Emmanuel
author_facet Odella, Emmanuel
Mora, S. Jimena
Wadsworth, Brian L.
Goings, Joshua J.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Groy, Thomas L.
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes Schiffer, Sharon
Moore, Ana L.
author_role author
author2 Mora, S. Jimena
Wadsworth, Brian L.
Goings, Joshua J.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Groy, Thomas L.
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes Schiffer, Sharon
Moore, Ana L.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PROTON-COUPLED ELECTRON TRANSFER
BENZIMIDAZOLE-PHENOL
topic PROTON-COUPLED ELECTRON TRANSFER
BENZIMIDAZOLE-PHENOL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular "dry proton wires" with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.
Fil: Odella, Emmanuel. Arizona State University; Estados Unidos
Fil: Mora, S. Jimena. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Goings, Joshua J.. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos
Fil: Gust, Devens. Arizona State University; Estados Unidos
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes Schiffer, Sharon. University of Yale. Yale School of Forestry & Environmental Studies; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos
description Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular "dry proton wires" with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119647
Odella, Emmanuel; Mora, S. Jimena; Wadsworth, Brian L.; Goings, Joshua J.; Gervaldo, Miguel Andres; et al.; Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires; Royal Society of Chemistry; Chemical Science; 11; 15; 3-2020; 3820-3828
2041-6539
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119647
identifier_str_mv Odella, Emmanuel; Mora, S. Jimena; Wadsworth, Brian L.; Goings, Joshua J.; Gervaldo, Miguel Andres; et al.; Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires; Royal Society of Chemistry; Chemical Science; 11; 15; 3-2020; 3820-3828
2041-6539
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C9SC06010C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268726394617856
score 13.13397