Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays

Autores
Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; Liddell, Paul A.; Groy, Thomas L.; Gervaldo, Miguel Andres; Sereno, Leonides Edmundo; Gust, Devens; Moore, Thomas A.; Moore, Gary F.; Hammes-Schiffer, Sharon; Moore, Ana L.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.
Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Huynh, Mioy T.. University of Yale; Estados Unidos
Fil: Goings, Joshua J.. University of Yale; Estados Unidos
Fil: Liddell, Paul A.. Arizona State University; Estados Unidos
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Gust, Devens. Arizona State University; Estados Unidos
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos
Materia
Benzimidazole-phenol
Proton-coupled electron transfer
H-bond network
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/104344

id CONICETDig_276b5f221dfe775a19c4a2c6c8d42ecf
oai_identifier_str oai:ri.conicet.gov.ar:11336/104344
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relaysOdella, EmmanuelMora, Sabrina JimenaWadsworth, Brian L.Huynh, Mioy T.Goings, Joshua J.Liddell, Paul A.Groy, Thomas L.Gervaldo, Miguel AndresSereno, Leonides EdmundoGust, DevensMoore, Thomas A.Moore, Gary F.Hammes-Schiffer, SharonMoore, Ana L.Benzimidazole-phenolProton-coupled electron transferH-bond networkhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados UnidosFil: Wadsworth, Brian L.. Arizona State University; Estados UnidosFil: Huynh, Mioy T.. University of Yale; Estados UnidosFil: Goings, Joshua J.. University of Yale; Estados UnidosFil: Liddell, Paul A.. Arizona State University; Estados UnidosFil: Groy, Thomas L.. Arizona State University; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Gust, Devens. Arizona State University; Estados UnidosFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Gary F.. Arizona State University; Estados UnidosFil: Hammes-Schiffer, Sharon. University of Yale; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados UnidosAmerican Chemical Society2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104344Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-154600002-78631520-5126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jacs.8b09724info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:09Zoai:ri.conicet.gov.ar:11336/104344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:09.948CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
title Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
spellingShingle Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
Odella, Emmanuel
Benzimidazole-phenol
Proton-coupled electron transfer
H-bond network
title_short Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
title_full Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
title_fullStr Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
title_full_unstemmed Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
title_sort Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
dc.creator.none.fl_str_mv Odella, Emmanuel
Mora, Sabrina Jimena
Wadsworth, Brian L.
Huynh, Mioy T.
Goings, Joshua J.
Liddell, Paul A.
Groy, Thomas L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author Odella, Emmanuel
author_facet Odella, Emmanuel
Mora, Sabrina Jimena
Wadsworth, Brian L.
Huynh, Mioy T.
Goings, Joshua J.
Liddell, Paul A.
Groy, Thomas L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author_role author
author2 Mora, Sabrina Jimena
Wadsworth, Brian L.
Huynh, Mioy T.
Goings, Joshua J.
Liddell, Paul A.
Groy, Thomas L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Gust, Devens
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Benzimidazole-phenol
Proton-coupled electron transfer
H-bond network
topic Benzimidazole-phenol
Proton-coupled electron transfer
H-bond network
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.
Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Huynh, Mioy T.. University of Yale; Estados Unidos
Fil: Goings, Joshua J.. University of Yale; Estados Unidos
Fil: Liddell, Paul A.. Arizona State University; Estados Unidos
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Gust, Devens. Arizona State University; Estados Unidos
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos
description Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/104344
Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-15460
0002-7863
1520-5126
CONICET Digital
CONICET
url http://hdl.handle.net/11336/104344
identifier_str_mv Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-15460
0002-7863
1520-5126
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jacs.8b09724
info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09724
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269504314277888
score 13.13397