Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays
- Autores
- Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; Liddell, Paul A.; Groy, Thomas L.; Gervaldo, Miguel Andres; Sereno, Leonides Edmundo; Gust, Devens; Moore, Thomas A.; Moore, Gary F.; Hammes-Schiffer, Sharon; Moore, Ana L.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.
Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Huynh, Mioy T.. University of Yale; Estados Unidos
Fil: Goings, Joshua J.. University of Yale; Estados Unidos
Fil: Liddell, Paul A.. Arizona State University; Estados Unidos
Fil: Groy, Thomas L.. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Gust, Devens. Arizona State University; Estados Unidos
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos - Materia
-
Benzimidazole-phenol
Proton-coupled electron transfer
H-bond network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104344
Ver los metadatos del registro completo
id |
CONICETDig_276b5f221dfe775a19c4a2c6c8d42ecf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104344 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relaysOdella, EmmanuelMora, Sabrina JimenaWadsworth, Brian L.Huynh, Mioy T.Goings, Joshua J.Liddell, Paul A.Groy, Thomas L.Gervaldo, Miguel AndresSereno, Leonides EdmundoGust, DevensMoore, Thomas A.Moore, Gary F.Hammes-Schiffer, SharonMoore, Ana L.Benzimidazole-phenolProton-coupled electron transferH-bond networkhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados UnidosFil: Wadsworth, Brian L.. Arizona State University; Estados UnidosFil: Huynh, Mioy T.. University of Yale; Estados UnidosFil: Goings, Joshua J.. University of Yale; Estados UnidosFil: Liddell, Paul A.. Arizona State University; Estados UnidosFil: Groy, Thomas L.. Arizona State University; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Gust, Devens. Arizona State University; Estados UnidosFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Gary F.. Arizona State University; Estados UnidosFil: Hammes-Schiffer, Sharon. University of Yale; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados UnidosAmerican Chemical Society2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104344Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-154600002-78631520-5126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jacs.8b09724info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:09Zoai:ri.conicet.gov.ar:11336/104344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:09.948CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
title |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
spellingShingle |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays Odella, Emmanuel Benzimidazole-phenol Proton-coupled electron transfer H-bond network |
title_short |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
title_full |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
title_fullStr |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
title_full_unstemmed |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
title_sort |
Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays |
dc.creator.none.fl_str_mv |
Odella, Emmanuel Mora, Sabrina Jimena Wadsworth, Brian L. Huynh, Mioy T. Goings, Joshua J. Liddell, Paul A. Groy, Thomas L. Gervaldo, Miguel Andres Sereno, Leonides Edmundo Gust, Devens Moore, Thomas A. Moore, Gary F. Hammes-Schiffer, Sharon Moore, Ana L. |
author |
Odella, Emmanuel |
author_facet |
Odella, Emmanuel Mora, Sabrina Jimena Wadsworth, Brian L. Huynh, Mioy T. Goings, Joshua J. Liddell, Paul A. Groy, Thomas L. Gervaldo, Miguel Andres Sereno, Leonides Edmundo Gust, Devens Moore, Thomas A. Moore, Gary F. Hammes-Schiffer, Sharon Moore, Ana L. |
author_role |
author |
author2 |
Mora, Sabrina Jimena Wadsworth, Brian L. Huynh, Mioy T. Goings, Joshua J. Liddell, Paul A. Groy, Thomas L. Gervaldo, Miguel Andres Sereno, Leonides Edmundo Gust, Devens Moore, Thomas A. Moore, Gary F. Hammes-Schiffer, Sharon Moore, Ana L. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Benzimidazole-phenol Proton-coupled electron transfer H-bond network |
topic |
Benzimidazole-phenol Proton-coupled electron transfer H-bond network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems. Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Mora, Sabrina Jimena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unidos Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos Fil: Huynh, Mioy T.. University of Yale; Estados Unidos Fil: Goings, Joshua J.. University of Yale; Estados Unidos Fil: Liddell, Paul A.. Arizona State University; Estados Unidos Fil: Groy, Thomas L.. Arizona State University; Estados Unidos Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Gust, Devens. Arizona State University; Estados Unidos Fil: Moore, Thomas A.. Arizona State University; Estados Unidos Fil: Moore, Gary F.. Arizona State University; Estados Unidos Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos Fil: Moore, Ana L.. Arizona State University; Estados Unidos |
description |
Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H -benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ~1.6 Å or ~6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative pKa values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (~1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104344 Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-15460 0002-7863 1520-5126 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104344 |
identifier_str_mv |
Odella, Emmanuel; Mora, Sabrina Jimena; Wadsworth, Brian L.; Huynh, Mioy T.; Goings, Joshua J.; et al.; Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays; American Chemical Society; Journal of the American Chemical Society; 140; 45; 10-2018; 15450-15460 0002-7863 1520-5126 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jacs.8b09724 info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09724 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269504314277888 |
score |
13.13397 |