Role of intact hydrogen-bond networks in multiproton-coupled electron transfer

Autores
Guerra, Walter Damián; Odella, Emmanuel; Secor, Maxim; Goings, Joshua J.; Urrutia, María N.; Wadsworth, Brian L.; Gervaldo, Miguel Andres; Sereno, Leonides Edmundo; Moore, Thomas A.; Moore, Gary F.; Hammes-Schiffer, Sharon; Moore, Ana L.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (μ1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.
Fil: Guerra, Walter Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Arizona State University; Estados Unidos
Fil: Odella, Emmanuel. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Secor, Maxim. University of Yale; Estados Unidos
Fil: Goings, Joshua J.. University of Yale; Estados Unidos
Fil: Urrutia, María N.. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos
Fil: Moore, Ana L.. University of Yale; Estados Unidos
Materia
Proton-coupled electron transfer
Benzimidazole−phenol
Cyclic voltammetry
Bioinspired assemblies
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136290

id CONICETDig_7656f70fb9de7b66ea501a0982a33a83
oai_identifier_str oai:ri.conicet.gov.ar:11336/136290
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Role of intact hydrogen-bond networks in multiproton-coupled electron transferGuerra, Walter DamiánOdella, EmmanuelSecor, MaximGoings, Joshua J.Urrutia, María N.Wadsworth, Brian L.Gervaldo, Miguel AndresSereno, Leonides EdmundoMoore, Thomas A.Moore, Gary F.Hammes-Schiffer, SharonMoore, Ana L.Proton-coupled electron transferBenzimidazole−phenolCyclic voltammetryBioinspired assemblieshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (μ1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.Fil: Guerra, Walter Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Arizona State University; Estados UnidosFil: Odella, Emmanuel. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Secor, Maxim. University of Yale; Estados UnidosFil: Goings, Joshua J.. University of Yale; Estados UnidosFil: Urrutia, María N.. Arizona State University; Estados UnidosFil: Wadsworth, Brian L.. Arizona State University; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Gary F.. Arizona State University; Estados UnidosFil: Hammes-Schiffer, Sharon. University of Yale; Estados UnidosFil: Moore, Ana L.. University of Yale; Estados UnidosAmerican Chemical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136290Guerra, Walter Damián; Odella, Emmanuel; Secor, Maxim; Goings, Joshua J.; Urrutia, María N.; et al.; Role of intact hydrogen-bond networks in multiproton-coupled electron transfer; American Chemical Society; Journal of the American Chemical Society; 142; 52; 12-2020; 21842-218510002-78631520-5126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.0c10474info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.0c10474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:06Zoai:ri.conicet.gov.ar:11336/136290instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:06.883CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
title Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
spellingShingle Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
Guerra, Walter Damián
Proton-coupled electron transfer
Benzimidazole−phenol
Cyclic voltammetry
Bioinspired assemblies
title_short Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
title_full Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
title_fullStr Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
title_full_unstemmed Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
title_sort Role of intact hydrogen-bond networks in multiproton-coupled electron transfer
dc.creator.none.fl_str_mv Guerra, Walter Damián
Odella, Emmanuel
Secor, Maxim
Goings, Joshua J.
Urrutia, María N.
Wadsworth, Brian L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author Guerra, Walter Damián
author_facet Guerra, Walter Damián
Odella, Emmanuel
Secor, Maxim
Goings, Joshua J.
Urrutia, María N.
Wadsworth, Brian L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author_role author
author2 Odella, Emmanuel
Secor, Maxim
Goings, Joshua J.
Urrutia, María N.
Wadsworth, Brian L.
Gervaldo, Miguel Andres
Sereno, Leonides Edmundo
Moore, Thomas A.
Moore, Gary F.
Hammes-Schiffer, Sharon
Moore, Ana L.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Proton-coupled electron transfer
Benzimidazole−phenol
Cyclic voltammetry
Bioinspired assemblies
topic Proton-coupled electron transfer
Benzimidazole−phenol
Cyclic voltammetry
Bioinspired assemblies
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (μ1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.
Fil: Guerra, Walter Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Arizona State University; Estados Unidos
Fil: Odella, Emmanuel. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Secor, Maxim. University of Yale; Estados Unidos
Fil: Goings, Joshua J.. University of Yale; Estados Unidos
Fil: Urrutia, María N.. Arizona State University; Estados Unidos
Fil: Wadsworth, Brian L.. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Sereno, Leonides Edmundo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Gary F.. Arizona State University; Estados Unidos
Fil: Hammes-Schiffer, Sharon. University of Yale; Estados Unidos
Fil: Moore, Ana L.. University of Yale; Estados Unidos
description The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (μ1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136290
Guerra, Walter Damián; Odella, Emmanuel; Secor, Maxim; Goings, Joshua J.; Urrutia, María N.; et al.; Role of intact hydrogen-bond networks in multiproton-coupled electron transfer; American Chemical Society; Journal of the American Chemical Society; 142; 52; 12-2020; 21842-21851
0002-7863
1520-5126
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136290
identifier_str_mv Guerra, Walter Damián; Odella, Emmanuel; Secor, Maxim; Goings, Joshua J.; Urrutia, María N.; et al.; Role of intact hydrogen-bond networks in multiproton-coupled electron transfer; American Chemical Society; Journal of the American Chemical Society; 142; 52; 12-2020; 21842-21851
0002-7863
1520-5126
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.0c10474
info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.0c10474
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614284420579328
score 13.070432