First steps towards a formalization of forcing
- Autores
- Gunther, Emmanuel; Pagano, Miguel Maria; Sanchez Terraf, Pedro Octavio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters. Given a transitive set M, we define its generic extension M[G], the canonical names for elements of M, and finally show that if M satisfies the axiom of pairing, then M[G] also does. We also prove that M[G] is transitive.
Fil: Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina
Fil: Sanchez Terraf, Pedro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina - Materia
-
FORCING
GENERIC EXTENSION
ISABELLE/ZF
NAMES
PREORDER
RASIOWA-SIKORSKI LEMMA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119677
Ver los metadatos del registro completo
id |
CONICETDig_98dcacefccf78b33d6a31e633d290a90 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119677 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
First steps towards a formalization of forcingGunther, EmmanuelPagano, Miguel MariaSanchez Terraf, Pedro OctavioFORCINGGENERIC EXTENSIONISABELLE/ZFNAMESPREORDERRASIOWA-SIKORSKI LEMMAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters. Given a transitive set M, we define its generic extension M[G], the canonical names for elements of M, and finally show that if M satisfies the axiom of pairing, then M[G] also does. We also prove that M[G] is transitive.Fil: Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Sanchez Terraf, Pedro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; ArgentinaElsevier2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119677Gunther, Emmanuel; Pagano, Miguel Maria; Sanchez Terraf, Pedro Octavio; First steps towards a formalization of forcing; Elsevier; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 119-1361571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S157106611930026Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2019.07.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:26Zoai:ri.conicet.gov.ar:11336/119677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:27.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
First steps towards a formalization of forcing |
title |
First steps towards a formalization of forcing |
spellingShingle |
First steps towards a formalization of forcing Gunther, Emmanuel FORCING GENERIC EXTENSION ISABELLE/ZF NAMES PREORDER RASIOWA-SIKORSKI LEMMA |
title_short |
First steps towards a formalization of forcing |
title_full |
First steps towards a formalization of forcing |
title_fullStr |
First steps towards a formalization of forcing |
title_full_unstemmed |
First steps towards a formalization of forcing |
title_sort |
First steps towards a formalization of forcing |
dc.creator.none.fl_str_mv |
Gunther, Emmanuel Pagano, Miguel Maria Sanchez Terraf, Pedro Octavio |
author |
Gunther, Emmanuel |
author_facet |
Gunther, Emmanuel Pagano, Miguel Maria Sanchez Terraf, Pedro Octavio |
author_role |
author |
author2 |
Pagano, Miguel Maria Sanchez Terraf, Pedro Octavio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FORCING GENERIC EXTENSION ISABELLE/ZF NAMES PREORDER RASIOWA-SIKORSKI LEMMA |
topic |
FORCING GENERIC EXTENSION ISABELLE/ZF NAMES PREORDER RASIOWA-SIKORSKI LEMMA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters. Given a transitive set M, we define its generic extension M[G], the canonical names for elements of M, and finally show that if M satisfies the axiom of pairing, then M[G] also does. We also prove that M[G] is transitive. Fil: Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina Fil: Sanchez Terraf, Pedro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina |
description |
We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters. Given a transitive set M, we define its generic extension M[G], the canonical names for elements of M, and finally show that if M satisfies the axiom of pairing, then M[G] also does. We also prove that M[G] is transitive. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119677 Gunther, Emmanuel; Pagano, Miguel Maria; Sanchez Terraf, Pedro Octavio; First steps towards a formalization of forcing; Elsevier; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 119-136 1571-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119677 |
identifier_str_mv |
Gunther, Emmanuel; Pagano, Miguel Maria; Sanchez Terraf, Pedro Octavio; First steps towards a formalization of forcing; Elsevier; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 119-136 1571-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S157106611930026X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2019.07.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613870988034048 |
score |
13.070432 |