Extensions of Jacobson's Lemma
- Autores
- Corach, Gustavo; Duggal, Bhaggy; Harte, Robin
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; Serbia
Fil: Harte, Robin. Universidad de Dublin; Irlanda - Materia
-
Jacobson'S Lemma
Operator
Resolvent - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3306
Ver los metadatos del registro completo
| id |
CONICETDig_5771d6ec23191f9e32ba76cc6af6e70c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3306 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Extensions of Jacobson's LemmaCorach, GustavoDuggal, Bhaggy Harte, RobinJacobson'S LemmaOperatorResolventhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; SerbiaFil: Harte, Robin. Universidad de Dublin; IrlandaTaylor2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3306Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-5310092-7872enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2011.602274info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:36Zoai:ri.conicet.gov.ar:11336/3306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:36.586CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Extensions of Jacobson's Lemma |
| title |
Extensions of Jacobson's Lemma |
| spellingShingle |
Extensions of Jacobson's Lemma Corach, Gustavo Jacobson'S Lemma Operator Resolvent |
| title_short |
Extensions of Jacobson's Lemma |
| title_full |
Extensions of Jacobson's Lemma |
| title_fullStr |
Extensions of Jacobson's Lemma |
| title_full_unstemmed |
Extensions of Jacobson's Lemma |
| title_sort |
Extensions of Jacobson's Lemma |
| dc.creator.none.fl_str_mv |
Corach, Gustavo Duggal, Bhaggy Harte, Robin |
| author |
Corach, Gustavo |
| author_facet |
Corach, Gustavo Duggal, Bhaggy Harte, Robin |
| author_role |
author |
| author2 |
Duggal, Bhaggy Harte, Robin |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Jacobson'S Lemma Operator Resolvent |
| topic |
Jacobson'S Lemma Operator Resolvent |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues. Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina Fil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; Serbia Fil: Harte, Robin. Universidad de Dublin; Irlanda |
| description |
Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3306 Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-531 0092-7872 |
| url |
http://hdl.handle.net/11336/3306 |
| identifier_str_mv |
Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-531 0092-7872 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2011.602274 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor |
| publisher.none.fl_str_mv |
Taylor |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597136109731840 |
| score |
13.24909 |