Extensions of Jacobson's Lemma

Autores
Corach, Gustavo; Duggal, Bhaggy; Harte, Robin
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; Serbia
Fil: Harte, Robin. Universidad de Dublin; Irlanda
Materia
Jacobson'S Lemma
Operator
Resolvent
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3306

id CONICETDig_5771d6ec23191f9e32ba76cc6af6e70c
oai_identifier_str oai:ri.conicet.gov.ar:11336/3306
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extensions of Jacobson's LemmaCorach, GustavoDuggal, Bhaggy Harte, RobinJacobson'S LemmaOperatorResolventhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; SerbiaFil: Harte, Robin. Universidad de Dublin; IrlandaTaylor2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3306Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-5310092-7872enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2011.602274info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:06Zoai:ri.conicet.gov.ar:11336/3306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:06.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extensions of Jacobson's Lemma
title Extensions of Jacobson's Lemma
spellingShingle Extensions of Jacobson's Lemma
Corach, Gustavo
Jacobson'S Lemma
Operator
Resolvent
title_short Extensions of Jacobson's Lemma
title_full Extensions of Jacobson's Lemma
title_fullStr Extensions of Jacobson's Lemma
title_full_unstemmed Extensions of Jacobson's Lemma
title_sort Extensions of Jacobson's Lemma
dc.creator.none.fl_str_mv Corach, Gustavo
Duggal, Bhaggy
Harte, Robin
author Corach, Gustavo
author_facet Corach, Gustavo
Duggal, Bhaggy
Harte, Robin
author_role author
author2 Duggal, Bhaggy
Harte, Robin
author2_role author
author
dc.subject.none.fl_str_mv Jacobson'S Lemma
Operator
Resolvent
topic Jacobson'S Lemma
Operator
Resolvent
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Duggal, Bhaggy . Visegradska. Faculty of Science and Mathematics. Department of Mathematics; Serbia
Fil: Harte, Robin. Universidad de Dublin; Irlanda
description Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3306
Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-531
0092-7872
url http://hdl.handle.net/11336/3306
identifier_str_mv Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-531
0092-7872
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2011.602274
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor
publisher.none.fl_str_mv Taylor
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613130023337984
score 13.070432