Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process
- Autores
- Freitas, José Nahuel; Paz, Juan Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017)]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
QUANTUM THERMODYNAMICS
LASER COOLING
QUANTUM OPEN SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97211
Ver los metadatos del registro completo
id |
CONICETDig_b22297afa063f13f50a6cc1075cc8cef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97211 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical processFreitas, José NahuelPaz, Juan PabloQUANTUM THERMODYNAMICSLASER COOLINGQUANTUM OPEN SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017)]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97211Freitas, José Nahuel; Paz, Juan Pablo; Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 3-2018; 32104-321191050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.11554info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.032104info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.032104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:08Zoai:ri.conicet.gov.ar:11336/97211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:08.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
title |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
spellingShingle |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process Freitas, José Nahuel QUANTUM THERMODYNAMICS LASER COOLING QUANTUM OPEN SYSTEMS |
title_short |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
title_full |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
title_fullStr |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
title_full_unstemmed |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
title_sort |
Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process |
dc.creator.none.fl_str_mv |
Freitas, José Nahuel Paz, Juan Pablo |
author |
Freitas, José Nahuel |
author_facet |
Freitas, José Nahuel Paz, Juan Pablo |
author_role |
author |
author2 |
Paz, Juan Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
QUANTUM THERMODYNAMICS LASER COOLING QUANTUM OPEN SYSTEMS |
topic |
QUANTUM THERMODYNAMICS LASER COOLING QUANTUM OPEN SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017)]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs. Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017)]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97211 Freitas, José Nahuel; Paz, Juan Pablo; Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 3-2018; 32104-32119 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97211 |
identifier_str_mv |
Freitas, José Nahuel; Paz, Juan Pablo; Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 3-2018; 32104-32119 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.11554 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.032104 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.032104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269990634389504 |
score |
13.13397 |