Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules
- Autores
- Futorny, Vyacheslav; Grantcharov, Dimitar; Ramirez, Luis Enrique; Zadunaisky Bustillos, Pablo Mauricio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the notion of essential support of a simple Gelfand-Tsetlin gln-module as an attempt to understand the character formula of such module. This support detects the weights having maximal possible Gelfand-Tsetlin multiplicities. Using combinatorial tools we describe the essential supports of the simple socles of the universal tableaux modules. We also prove that every simple Verma module appears as the socle of a universal tableaux module. As a consequence, we prove the Strong Futorny-Ovsienko Conjecture on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplicities. We also give a very explicit description of the support and essential support of the simple singular Verma module M(−ρ).
Fil: Futorny, Vyacheslav. Universidade de Sao Paulo; Brasil
Fil: Grantcharov, Dimitar. University of Texas; Estados Unidos
Fil: Ramirez, Luis Enrique. Universidad Federal Do Abc; Brasil
Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
GELFAND-TSETLIN BASES
GELFAND-TSETLIN MODULES
REFLECTION GROUPS
VERMA MODULES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/139098
Ver los metadatos del registro completo
id |
CONICETDig_98356815cd3ca41d18b5270982055ceb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/139098 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modulesFutorny, VyacheslavGrantcharov, DimitarRamirez, Luis EnriqueZadunaisky Bustillos, Pablo MauricioGELFAND-TSETLIN BASESGELFAND-TSETLIN MODULESREFLECTION GROUPSVERMA MODULEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the notion of essential support of a simple Gelfand-Tsetlin gln-module as an attempt to understand the character formula of such module. This support detects the weights having maximal possible Gelfand-Tsetlin multiplicities. Using combinatorial tools we describe the essential supports of the simple socles of the universal tableaux modules. We also prove that every simple Verma module appears as the socle of a universal tableaux module. As a consequence, we prove the Strong Futorny-Ovsienko Conjecture on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplicities. We also give a very explicit description of the support and essential support of the simple singular Verma module M(−ρ).Fil: Futorny, Vyacheslav. Universidade de Sao Paulo; BrasilFil: Grantcharov, Dimitar. University of Texas; Estados UnidosFil: Ramirez, Luis Enrique. Universidad Federal Do Abc; BrasilFil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139098Futorny, Vyacheslav; Grantcharov, Dimitar; Ramirez, Luis Enrique; Zadunaisky Bustillos, Pablo Mauricio; Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules; Academic Press Inc Elsevier Science; Journal of Algebra; 556; 8-2020; 412-4360021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869320301289?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2020.02.032info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1811.07992info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:50Zoai:ri.conicet.gov.ar:11336/139098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:50.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
title |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
spellingShingle |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules Futorny, Vyacheslav GELFAND-TSETLIN BASES GELFAND-TSETLIN MODULES REFLECTION GROUPS VERMA MODULES |
title_short |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
title_full |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
title_fullStr |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
title_full_unstemmed |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
title_sort |
Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules |
dc.creator.none.fl_str_mv |
Futorny, Vyacheslav Grantcharov, Dimitar Ramirez, Luis Enrique Zadunaisky Bustillos, Pablo Mauricio |
author |
Futorny, Vyacheslav |
author_facet |
Futorny, Vyacheslav Grantcharov, Dimitar Ramirez, Luis Enrique Zadunaisky Bustillos, Pablo Mauricio |
author_role |
author |
author2 |
Grantcharov, Dimitar Ramirez, Luis Enrique Zadunaisky Bustillos, Pablo Mauricio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GELFAND-TSETLIN BASES GELFAND-TSETLIN MODULES REFLECTION GROUPS VERMA MODULES |
topic |
GELFAND-TSETLIN BASES GELFAND-TSETLIN MODULES REFLECTION GROUPS VERMA MODULES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the notion of essential support of a simple Gelfand-Tsetlin gln-module as an attempt to understand the character formula of such module. This support detects the weights having maximal possible Gelfand-Tsetlin multiplicities. Using combinatorial tools we describe the essential supports of the simple socles of the universal tableaux modules. We also prove that every simple Verma module appears as the socle of a universal tableaux module. As a consequence, we prove the Strong Futorny-Ovsienko Conjecture on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplicities. We also give a very explicit description of the support and essential support of the simple singular Verma module M(−ρ). Fil: Futorny, Vyacheslav. Universidade de Sao Paulo; Brasil Fil: Grantcharov, Dimitar. University of Texas; Estados Unidos Fil: Ramirez, Luis Enrique. Universidad Federal Do Abc; Brasil Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We introduce the notion of essential support of a simple Gelfand-Tsetlin gln-module as an attempt to understand the character formula of such module. This support detects the weights having maximal possible Gelfand-Tsetlin multiplicities. Using combinatorial tools we describe the essential supports of the simple socles of the universal tableaux modules. We also prove that every simple Verma module appears as the socle of a universal tableaux module. As a consequence, we prove the Strong Futorny-Ovsienko Conjecture on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplicities. We also give a very explicit description of the support and essential support of the simple singular Verma module M(−ρ). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/139098 Futorny, Vyacheslav; Grantcharov, Dimitar; Ramirez, Luis Enrique; Zadunaisky Bustillos, Pablo Mauricio; Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules; Academic Press Inc Elsevier Science; Journal of Algebra; 556; 8-2020; 412-436 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/139098 |
identifier_str_mv |
Futorny, Vyacheslav; Grantcharov, Dimitar; Ramirez, Luis Enrique; Zadunaisky Bustillos, Pablo Mauricio; Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules; Academic Press Inc Elsevier Science; Journal of Algebra; 556; 8-2020; 412-436 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869320301289?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2020.02.032 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1811.07992 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613157388025856 |
score |
13.070432 |