On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions

Autores
López García, José Juan; Grosse, Constantino; Horno, José
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while  the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model.

Fil: López García, José Juan. Universidad de Jaén; España
Fil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Horno, José. Universidad de Jaén; España
Materia
Dielectrics
Colloids
Electrocinetics
Double Layer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79496

id CONICETDig_975af476949b00c537379ade817d30ae
oai_identifier_str oai:ri.conicet.gov.ar:11336/79496
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensionsLópez García, José JuanGrosse, ConstantinoHorno, JoséDielectricsColloidsElectrocineticsDouble Layerhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while  the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br />Fil: López García, José Juan. Universidad de Jaén; EspañaFil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Horno, José. Universidad de Jaén; EspañaAcademic Press Inc Elsevier Science2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79496López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-3890021-9797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2008.09.078info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002197970801240X?via%3Dihub#!info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:27Zoai:ri.conicet.gov.ar:11336/79496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:27.826CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
title On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
spellingShingle On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
López García, José Juan
Dielectrics
Colloids
Electrocinetics
Double Layer
title_short On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
title_full On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
title_fullStr On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
title_full_unstemmed On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
title_sort On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
dc.creator.none.fl_str_mv López García, José Juan
Grosse, Constantino
Horno, José
author López García, José Juan
author_facet López García, José Juan
Grosse, Constantino
Horno, José
author_role author
author2 Grosse, Constantino
Horno, José
author2_role author
author
dc.subject.none.fl_str_mv Dielectrics
Colloids
Electrocinetics
Double Layer
topic Dielectrics
Colloids
Electrocinetics
Double Layer
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while  the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br />
Fil: López García, José Juan. Universidad de Jaén; España
Fil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Horno, José. Universidad de Jaén; España
description The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while  the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br />
publishDate 2009
dc.date.none.fl_str_mv 2009-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79496
López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-389
0021-9797
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79496
identifier_str_mv López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-389
0021-9797
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2008.09.078
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002197970801240X?via%3Dihub#!
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269344775536640
score 13.13397