On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions
- Autores
- López García, José Juan; Grosse, Constantino; Horno, José
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model.
Fil: López García, José Juan. Universidad de Jaén; España
Fil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Horno, José. Universidad de Jaén; España - Materia
-
Dielectrics
Colloids
Electrocinetics
Double Layer - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79496
Ver los metadatos del registro completo
id |
CONICETDig_975af476949b00c537379ade817d30ae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79496 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensionsLópez García, José JuanGrosse, ConstantinoHorno, JoséDielectricsColloidsElectrocineticsDouble Layerhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br />Fil: López García, José Juan. Universidad de Jaén; EspañaFil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Horno, José. Universidad de Jaén; EspañaAcademic Press Inc Elsevier Science2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79496López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-3890021-9797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2008.09.078info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002197970801240X?via%3Dihub#!info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:27Zoai:ri.conicet.gov.ar:11336/79496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:27.826CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
title |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
spellingShingle |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions López García, José Juan Dielectrics Colloids Electrocinetics Double Layer |
title_short |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
title_full |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
title_fullStr |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
title_full_unstemmed |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
title_sort |
On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions |
dc.creator.none.fl_str_mv |
López García, José Juan Grosse, Constantino Horno, José |
author |
López García, José Juan |
author_facet |
López García, José Juan Grosse, Constantino Horno, José |
author_role |
author |
author2 |
Grosse, Constantino Horno, José |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dielectrics Colloids Electrocinetics Double Layer |
topic |
Dielectrics Colloids Electrocinetics Double Layer |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br /> Fil: López García, José Juan. Universidad de Jaén; España Fil: Grosse, Constantino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Horno, José. Universidad de Jaén; España |
description |
The classical description of colloidal suspensions is based on a series of assumptions that constitute the standard electrokinetic model: suspended particles are surrounded by a uniform surface density of fixed charge, the equilibrium ion density coincides with the Gouy-Chapman distribution, and the surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile and relatively simple to compute, the classical model often fails to predict crucial experimental trends. Consequently, various attempts have been made to generalyze the standard electrokinetic model in order to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism increases the conductivity and dielectric response but decreases the electrophoretic mobility, while the charged-layer approach leads to electrophoretic mobility values that can actually increase with the surface layer conductivity. Here we compare the predictions of these two surface layer models regarding the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for high kappa*a (kappa and a being the reciprocal Debye length and the particle radius, respectively) and intermediate electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum value predicted by the standard electrokinetic model, the experimental data can only be interpreted using the charged-layer model. <br /> |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79496 López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-389 0021-9797 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79496 |
identifier_str_mv |
López García, José Juan; Grosse, Constantino; Horno, José; On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 329; 2; 1-2009; 384-389 0021-9797 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2008.09.078 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002197970801240X?via%3Dihub#! |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269344775536640 |
score |
13.13397 |