A framework for causal discovery in non-intervenable systems

Autores
Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.
Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos
Fil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados Unidos
Fil: Chakraborty, Nachiketa. University of Reading; Reino Unido
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
SHANNON
TIME SERIES
MULTIVARIATE CAUSALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/158972

id CONICETDig_76f3ffd073bf566b60ac2965f21ffa50
oai_identifier_str oai:ri.conicet.gov.ar:11336/158972
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A framework for causal discovery in non-intervenable systemsLeeuwen, Peter Jan vanDeCaria, MichaelChakraborty, NachiketaPulido, Manuel ArturoSHANNONTIME SERIESMULTIVARIATE CAUSALITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados UnidosFil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados UnidosFil: Chakraborty, Nachiketa. University of Reading; Reino UnidoFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaAmerican Institute of Physics2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158972Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-191054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0054228info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0054228info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:15:42Zoai:ri.conicet.gov.ar:11336/158972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:15:42.581CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A framework for causal discovery in non-intervenable systems
title A framework for causal discovery in non-intervenable systems
spellingShingle A framework for causal discovery in non-intervenable systems
Leeuwen, Peter Jan van
SHANNON
TIME SERIES
MULTIVARIATE CAUSALITY
title_short A framework for causal discovery in non-intervenable systems
title_full A framework for causal discovery in non-intervenable systems
title_fullStr A framework for causal discovery in non-intervenable systems
title_full_unstemmed A framework for causal discovery in non-intervenable systems
title_sort A framework for causal discovery in non-intervenable systems
dc.creator.none.fl_str_mv Leeuwen, Peter Jan van
DeCaria, Michael
Chakraborty, Nachiketa
Pulido, Manuel Arturo
author Leeuwen, Peter Jan van
author_facet Leeuwen, Peter Jan van
DeCaria, Michael
Chakraborty, Nachiketa
Pulido, Manuel Arturo
author_role author
author2 DeCaria, Michael
Chakraborty, Nachiketa
Pulido, Manuel Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv SHANNON
TIME SERIES
MULTIVARIATE CAUSALITY
topic SHANNON
TIME SERIES
MULTIVARIATE CAUSALITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.
Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos
Fil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados Unidos
Fil: Chakraborty, Nachiketa. University of Reading; Reino Unido
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/158972
Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-19
1054-1500
1089-7682
CONICET Digital
CONICET
url http://hdl.handle.net/11336/158972
identifier_str_mv Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-19
1054-1500
1089-7682
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0054228
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0054228
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782572577685504
score 12.982451