A framework for causal discovery in non-intervenable systems
- Autores
- Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.
Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos
Fil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados Unidos
Fil: Chakraborty, Nachiketa. University of Reading; Reino Unido
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina - Materia
-
SHANNON
TIME SERIES
MULTIVARIATE CAUSALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/158972
Ver los metadatos del registro completo
| id |
CONICETDig_76f3ffd073bf566b60ac2965f21ffa50 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/158972 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A framework for causal discovery in non-intervenable systemsLeeuwen, Peter Jan vanDeCaria, MichaelChakraborty, NachiketaPulido, Manuel ArturoSHANNONTIME SERIESMULTIVARIATE CAUSALITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados UnidosFil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados UnidosFil: Chakraborty, Nachiketa. University of Reading; Reino UnidoFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaAmerican Institute of Physics2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158972Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-191054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0054228info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0054228info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:15:42Zoai:ri.conicet.gov.ar:11336/158972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:15:42.581CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A framework for causal discovery in non-intervenable systems |
| title |
A framework for causal discovery in non-intervenable systems |
| spellingShingle |
A framework for causal discovery in non-intervenable systems Leeuwen, Peter Jan van SHANNON TIME SERIES MULTIVARIATE CAUSALITY |
| title_short |
A framework for causal discovery in non-intervenable systems |
| title_full |
A framework for causal discovery in non-intervenable systems |
| title_fullStr |
A framework for causal discovery in non-intervenable systems |
| title_full_unstemmed |
A framework for causal discovery in non-intervenable systems |
| title_sort |
A framework for causal discovery in non-intervenable systems |
| dc.creator.none.fl_str_mv |
Leeuwen, Peter Jan van DeCaria, Michael Chakraborty, Nachiketa Pulido, Manuel Arturo |
| author |
Leeuwen, Peter Jan van |
| author_facet |
Leeuwen, Peter Jan van DeCaria, Michael Chakraborty, Nachiketa Pulido, Manuel Arturo |
| author_role |
author |
| author2 |
DeCaria, Michael Chakraborty, Nachiketa Pulido, Manuel Arturo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
SHANNON TIME SERIES MULTIVARIATE CAUSALITY |
| topic |
SHANNON TIME SERIES MULTIVARIATE CAUSALITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies. Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos Fil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados Unidos Fil: Chakraborty, Nachiketa. University of Reading; Reino Unido Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina |
| description |
Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/158972 Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-19 1054-1500 1089-7682 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/158972 |
| identifier_str_mv |
Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-19 1054-1500 1089-7682 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0054228 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0054228 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782572577685504 |
| score |
12.982451 |