A machine learning-based model for a dose point kernel calculation
- Autores
- Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose: Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. Methods: DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with 90 Y. Results: The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than 10 % in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than 7 % were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. Conclusion: An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times.
Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; Chile
Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
BETA EMITTERS
DOSE POINT KERNEL
INTERNAL DOSIMETRY
MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219067
Ver los metadatos del registro completo
id |
CONICETDig_95cfd1e8aa25fb831095f5df3f867251 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219067 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A machine learning-based model for a dose point kernel calculationScarinci, Ignacio EmanuelValente, Mauro AndresPérez, Pedro AntonioBETA EMITTERSDOSE POINT KERNELINTERNAL DOSIMETRYMACHINE LEARNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Purpose: Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. Methods: DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with 90 Y. Results: The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than 10 % in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than 7 % were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. Conclusion: An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times.Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; ChileFil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219067Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; A machine learning-based model for a dose point kernel calculation; Springer; EJNMMI Physics; 10; 1; 12-2023; 1-142197-7364CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-023-00560-9info:eu-repo/semantics/altIdentifier/doi/10.1186/s40658-023-00560-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:35:48Zoai:ri.conicet.gov.ar:11336/219067instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:35:49.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A machine learning-based model for a dose point kernel calculation |
title |
A machine learning-based model for a dose point kernel calculation |
spellingShingle |
A machine learning-based model for a dose point kernel calculation Scarinci, Ignacio Emanuel BETA EMITTERS DOSE POINT KERNEL INTERNAL DOSIMETRY MACHINE LEARNING |
title_short |
A machine learning-based model for a dose point kernel calculation |
title_full |
A machine learning-based model for a dose point kernel calculation |
title_fullStr |
A machine learning-based model for a dose point kernel calculation |
title_full_unstemmed |
A machine learning-based model for a dose point kernel calculation |
title_sort |
A machine learning-based model for a dose point kernel calculation |
dc.creator.none.fl_str_mv |
Scarinci, Ignacio Emanuel Valente, Mauro Andres Pérez, Pedro Antonio |
author |
Scarinci, Ignacio Emanuel |
author_facet |
Scarinci, Ignacio Emanuel Valente, Mauro Andres Pérez, Pedro Antonio |
author_role |
author |
author2 |
Valente, Mauro Andres Pérez, Pedro Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BETA EMITTERS DOSE POINT KERNEL INTERNAL DOSIMETRY MACHINE LEARNING |
topic |
BETA EMITTERS DOSE POINT KERNEL INTERNAL DOSIMETRY MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Purpose: Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. Methods: DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with 90 Y. Results: The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than 10 % in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than 7 % were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. Conclusion: An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times. Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; Chile Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Purpose: Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. Methods: DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with 90 Y. Results: The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than 10 % in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than 7 % were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. Conclusion: An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219067 Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; A machine learning-based model for a dose point kernel calculation; Springer; EJNMMI Physics; 10; 1; 12-2023; 1-14 2197-7364 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219067 |
identifier_str_mv |
Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; A machine learning-based model for a dose point kernel calculation; Springer; EJNMMI Physics; 10; 1; 12-2023; 1-14 2197-7364 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-023-00560-9 info:eu-repo/semantics/altIdentifier/doi/10.1186/s40658-023-00560-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082820376625152 |
score |
13.22299 |