Congenital iodide transport defect: recent advances and future perspectives
- Autores
- Martín, Mariano; Nicola, Juan Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Iodide is an irreplaceable component of thyroid hormones; therefore, a key requirement for thyroid hormone synthesis is that iodide is actively accumulated in the thyroid. The ability of thyroid follicular cell to concentrate iodide relies on the functional expression of the sodium/iodide symporter (SIS) at the plasma membrane. Underscoring the significance of SIS for thyroid physiology, naturally occurring loss-of-function SIS mutations cause iodide transport defect (ITD) autosomalrecessive disorders in which iodide accumulation is severely or totally impaired, leading to dyshormonogenic congenital hypothyroidism. Up to date, sixteen different loss-of-function mutations in the gene encoding SIS have been reported. Surprisingly, marked clinical heterogeneity between patients harboring the different (or even the same) SIS mutation without a clear genotype–phenotype correlation has been observed. Residual mutant SIS activity and iodide intake levels have been proposed to explain the difference in the age of onset on hypothyroidism and the development of goiter. Significantly, genetic screening is highly recommended in patients with severely reduced radioiodide accumulation even in the absence of goiter. The identification of mutations in SIS may allow subsequent preclinical diagnoses of younger members of the family as patients with delayed onset on hypothyroidism had already signs of developmental delay at time of diagnosis. Moreover, iodide supplementation can improve thyroid function in patients with residual SIS activity and should be considered. This review summarizes the current knowledge regarding the molecular basis of ITD, as well as the clinical and biochemical presentation of patients with ITD. Moreover, we explore the latest advances in the molecular characterization of ITD-causing slc5a5 mutants whose study has yielded invaluable information into the molecular mechaSISm of SIS and the perspectives of understanding naturally occurring SIS mutants to improve radioiodide therapy in thyroid cancer as well as SIS-based gene therapy.
Fil: Martín, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina
Fil: Nicola, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina - Materia
-
CONGENITAL HYPOTHYRODISM
IODIDE TRANSPORT DEFECT
SODIUM IODIDE SYMPORTER
PLASMA MEMBRANE TARGETING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46764
Ver los metadatos del registro completo
id |
CONICETDig_94f61b8674effd4acc125c101a1be6ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46764 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Congenital iodide transport defect: recent advances and future perspectivesMartín, MarianoNicola, Juan PabloCONGENITAL HYPOTHYRODISMIODIDE TRANSPORT DEFECTSODIUM IODIDE SYMPORTERPLASMA MEMBRANE TARGETINGhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Iodide is an irreplaceable component of thyroid hormones; therefore, a key requirement for thyroid hormone synthesis is that iodide is actively accumulated in the thyroid. The ability of thyroid follicular cell to concentrate iodide relies on the functional expression of the sodium/iodide symporter (SIS) at the plasma membrane. Underscoring the significance of SIS for thyroid physiology, naturally occurring loss-of-function SIS mutations cause iodide transport defect (ITD) autosomalrecessive disorders in which iodide accumulation is severely or totally impaired, leading to dyshormonogenic congenital hypothyroidism. Up to date, sixteen different loss-of-function mutations in the gene encoding SIS have been reported. Surprisingly, marked clinical heterogeneity between patients harboring the different (or even the same) SIS mutation without a clear genotype–phenotype correlation has been observed. Residual mutant SIS activity and iodide intake levels have been proposed to explain the difference in the age of onset on hypothyroidism and the development of goiter. Significantly, genetic screening is highly recommended in patients with severely reduced radioiodide accumulation even in the absence of goiter. The identification of mutations in SIS may allow subsequent preclinical diagnoses of younger members of the family as patients with delayed onset on hypothyroidism had already signs of developmental delay at time of diagnosis. Moreover, iodide supplementation can improve thyroid function in patients with residual SIS activity and should be considered. This review summarizes the current knowledge regarding the molecular basis of ITD, as well as the clinical and biochemical presentation of patients with ITD. Moreover, we explore the latest advances in the molecular characterization of ITD-causing slc5a5 mutants whose study has yielded invaluable information into the molecular mechaSISm of SIS and the perspectives of understanding naturally occurring SIS mutants to improve radioiodide therapy in thyroid cancer as well as SIS-based gene therapy.Fil: Martín, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Nicola, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaiMedPub Journals2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46764Martín, Mariano; Nicola, Juan Pablo; Congenital iodide transport defect: recent advances and future perspectives; iMedPub Journals; Journal of Clinical and Molecular Endocrinology; 1; 2; 6-20162572-5432CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bit.ly/2H7lSTyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:27Zoai:ri.conicet.gov.ar:11336/46764instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:27.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Congenital iodide transport defect: recent advances and future perspectives |
title |
Congenital iodide transport defect: recent advances and future perspectives |
spellingShingle |
Congenital iodide transport defect: recent advances and future perspectives Martín, Mariano CONGENITAL HYPOTHYRODISM IODIDE TRANSPORT DEFECT SODIUM IODIDE SYMPORTER PLASMA MEMBRANE TARGETING |
title_short |
Congenital iodide transport defect: recent advances and future perspectives |
title_full |
Congenital iodide transport defect: recent advances and future perspectives |
title_fullStr |
Congenital iodide transport defect: recent advances and future perspectives |
title_full_unstemmed |
Congenital iodide transport defect: recent advances and future perspectives |
title_sort |
Congenital iodide transport defect: recent advances and future perspectives |
dc.creator.none.fl_str_mv |
Martín, Mariano Nicola, Juan Pablo |
author |
Martín, Mariano |
author_facet |
Martín, Mariano Nicola, Juan Pablo |
author_role |
author |
author2 |
Nicola, Juan Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONGENITAL HYPOTHYRODISM IODIDE TRANSPORT DEFECT SODIUM IODIDE SYMPORTER PLASMA MEMBRANE TARGETING |
topic |
CONGENITAL HYPOTHYRODISM IODIDE TRANSPORT DEFECT SODIUM IODIDE SYMPORTER PLASMA MEMBRANE TARGETING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Iodide is an irreplaceable component of thyroid hormones; therefore, a key requirement for thyroid hormone synthesis is that iodide is actively accumulated in the thyroid. The ability of thyroid follicular cell to concentrate iodide relies on the functional expression of the sodium/iodide symporter (SIS) at the plasma membrane. Underscoring the significance of SIS for thyroid physiology, naturally occurring loss-of-function SIS mutations cause iodide transport defect (ITD) autosomalrecessive disorders in which iodide accumulation is severely or totally impaired, leading to dyshormonogenic congenital hypothyroidism. Up to date, sixteen different loss-of-function mutations in the gene encoding SIS have been reported. Surprisingly, marked clinical heterogeneity between patients harboring the different (or even the same) SIS mutation without a clear genotype–phenotype correlation has been observed. Residual mutant SIS activity and iodide intake levels have been proposed to explain the difference in the age of onset on hypothyroidism and the development of goiter. Significantly, genetic screening is highly recommended in patients with severely reduced radioiodide accumulation even in the absence of goiter. The identification of mutations in SIS may allow subsequent preclinical diagnoses of younger members of the family as patients with delayed onset on hypothyroidism had already signs of developmental delay at time of diagnosis. Moreover, iodide supplementation can improve thyroid function in patients with residual SIS activity and should be considered. This review summarizes the current knowledge regarding the molecular basis of ITD, as well as the clinical and biochemical presentation of patients with ITD. Moreover, we explore the latest advances in the molecular characterization of ITD-causing slc5a5 mutants whose study has yielded invaluable information into the molecular mechaSISm of SIS and the perspectives of understanding naturally occurring SIS mutants to improve radioiodide therapy in thyroid cancer as well as SIS-based gene therapy. Fil: Martín, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina Fil: Nicola, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina |
description |
Iodide is an irreplaceable component of thyroid hormones; therefore, a key requirement for thyroid hormone synthesis is that iodide is actively accumulated in the thyroid. The ability of thyroid follicular cell to concentrate iodide relies on the functional expression of the sodium/iodide symporter (SIS) at the plasma membrane. Underscoring the significance of SIS for thyroid physiology, naturally occurring loss-of-function SIS mutations cause iodide transport defect (ITD) autosomalrecessive disorders in which iodide accumulation is severely or totally impaired, leading to dyshormonogenic congenital hypothyroidism. Up to date, sixteen different loss-of-function mutations in the gene encoding SIS have been reported. Surprisingly, marked clinical heterogeneity between patients harboring the different (or even the same) SIS mutation without a clear genotype–phenotype correlation has been observed. Residual mutant SIS activity and iodide intake levels have been proposed to explain the difference in the age of onset on hypothyroidism and the development of goiter. Significantly, genetic screening is highly recommended in patients with severely reduced radioiodide accumulation even in the absence of goiter. The identification of mutations in SIS may allow subsequent preclinical diagnoses of younger members of the family as patients with delayed onset on hypothyroidism had already signs of developmental delay at time of diagnosis. Moreover, iodide supplementation can improve thyroid function in patients with residual SIS activity and should be considered. This review summarizes the current knowledge regarding the molecular basis of ITD, as well as the clinical and biochemical presentation of patients with ITD. Moreover, we explore the latest advances in the molecular characterization of ITD-causing slc5a5 mutants whose study has yielded invaluable information into the molecular mechaSISm of SIS and the perspectives of understanding naturally occurring SIS mutants to improve radioiodide therapy in thyroid cancer as well as SIS-based gene therapy. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46764 Martín, Mariano; Nicola, Juan Pablo; Congenital iodide transport defect: recent advances and future perspectives; iMedPub Journals; Journal of Clinical and Molecular Endocrinology; 1; 2; 6-2016 2572-5432 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46764 |
identifier_str_mv |
Martín, Mariano; Nicola, Juan Pablo; Congenital iodide transport defect: recent advances and future perspectives; iMedPub Journals; Journal of Clinical and Molecular Endocrinology; 1; 2; 6-2016 2572-5432 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2H7lSTy |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
iMedPub Journals |
publisher.none.fl_str_mv |
iMedPub Journals |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082781498572800 |
score |
13.22299 |