Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms

Autores
Ceriotti, Luis Federico; Garcia, Laura Evangelina; Sánchez Puerta, María Virginia
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.
Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Eastern Regional Meeting
Montreal
Canadá
Canadian Society of Plant Biologists
McGill University
Materia
.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/156098

id CONICETDig_94997dcc441313159a94a9a80147172c
oai_identifier_str oai:ri.conicet.gov.ar:11336/156098
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in AngiospermsCeriotti, Luis FedericoGarcia, Laura EvangelinaSánchez Puerta, María Virginia.https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaEastern Regional MeetingMontrealCanadáCanadian Society of Plant BiologistsMcGill UniversityCanadian Society of Plant Biologists2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156098Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cspb-scbv.ca/resources/Documents/ERM2017.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:44Zoai:ri.conicet.gov.ar:11336/156098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:45.207CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
title Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
spellingShingle Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
Ceriotti, Luis Federico
.
title_short Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
title_full Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
title_fullStr Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
title_full_unstemmed Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
title_sort Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
dc.creator.none.fl_str_mv Ceriotti, Luis Federico
Garcia, Laura Evangelina
Sánchez Puerta, María Virginia
author Ceriotti, Luis Federico
author_facet Ceriotti, Luis Federico
Garcia, Laura Evangelina
Sánchez Puerta, María Virginia
author_role author
author2 Garcia, Laura Evangelina
Sánchez Puerta, María Virginia
author2_role author
author
dc.subject.none.fl_str_mv .
topic .
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.
Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Eastern Regional Meeting
Montreal
Canadá
Canadian Society of Plant Biologists
McGill University
description The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/156098
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34
CONICET Digital
CONICET
url http://hdl.handle.net/11336/156098
identifier_str_mv Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cspb-scbv.ca/resources/Documents/ERM2017.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Canadian Society of Plant Biologists
publisher.none.fl_str_mv Canadian Society of Plant Biologists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979902463148032
score 12.493442