Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms
- Autores
- Ceriotti, Luis Federico; Garcia, Laura Evangelina; Sánchez Puerta, María Virginia
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.
Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Eastern Regional Meeting
Montreal
Canadá
Canadian Society of Plant Biologists
McGill University - Materia
- .
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/156098
Ver los metadatos del registro completo
id |
CONICETDig_94997dcc441313159a94a9a80147172c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/156098 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in AngiospermsCeriotti, Luis FedericoGarcia, Laura EvangelinaSánchez Puerta, María Virginia.https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms.Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaEastern Regional MeetingMontrealCanadáCanadian Society of Plant BiologistsMcGill UniversityCanadian Society of Plant Biologists2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156098Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cspb-scbv.ca/resources/Documents/ERM2017.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:44Zoai:ri.conicet.gov.ar:11336/156098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:45.207CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
title |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
spellingShingle |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms Ceriotti, Luis Federico . |
title_short |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
title_full |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
title_fullStr |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
title_full_unstemmed |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
title_sort |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms |
dc.creator.none.fl_str_mv |
Ceriotti, Luis Federico Garcia, Laura Evangelina Sánchez Puerta, María Virginia |
author |
Ceriotti, Luis Federico |
author_facet |
Ceriotti, Luis Federico Garcia, Laura Evangelina Sánchez Puerta, María Virginia |
author_role |
author |
author2 |
Garcia, Laura Evangelina Sánchez Puerta, María Virginia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
. |
topic |
. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms. Fil: Ceriotti, Luis Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Garcia, Laura Evangelina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina Fil: Sánchez Puerta, María Virginia. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina Eastern Regional Meeting Montreal Canadá Canadian Society of Plant Biologists McGill University |
description |
The most frequent case of horizontal gene transfer in angiosperms involves the group I intron in the cox1 mitochondrial gene, originally acquired from a fungal donor and followed by more than 100 subsequent inferred plant-to-plant transfer events. This promiscuous behaviour is thought to be due to its encoded DNA homing endonuclease, whose cleavage site is in cox1 intron-less alleles. The study of homologous introns in yeast suggests that intron insertion occurs through the double-strand break repair (DSBR) pathway without crossover, process called intron homing. So, this mechanism has been proposed to participate in angiosperms cox1 intron propagation. However, other repair mechanisms supposed to occur in plant mitochondria could participate. These mechanisms can be distinguished because they are supposed to generate crossovers (CO) and/or non-crossovers (NCO) in different proportions. In order to detect possible alternative repair mechanisms involved in cox1 intron propagation, we analyzed 139 angiosperm species with the intron. The analysis consisted in the identificationof CO and NCO events comparing exon1, exon2 and intron phylogenetic relationships. When sequences were available the analyses was extended to intergenic regions flanking the exons. In contrast with original DSBR model, where COs and NCOs are expected to occur in similar proportions, only NCO events where detected in our analyses. We propose an alternative repair pathway called synthesis-dependent strand annealing (SDSA), which can only produce NCO results, as the most probable mechanism involved in the cox1 intron propagation in angiosperms. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/156098 Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/156098 |
identifier_str_mv |
Evolution and mechanism of the mitochondrial cox1 intron horizontal transfer in Angiosperms; Eastern Regional Meeting; Montreal; Canadá; 2017; 34-34 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cspb-scbv.ca/resources/Documents/ERM2017.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Canadian Society of Plant Biologists |
publisher.none.fl_str_mv |
Canadian Society of Plant Biologists |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979902463148032 |
score |
12.493442 |