Using generic order moments for separation of dependent sources with linear conditional expectations
- Autores
- Caiafa, César Federico; Kuruoglu, Ercan E.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we approach the blind separation of dependent sources based only on a set of their linear mixtures. We prove that, when the sources have a pairwise dependence characterized by the linear conditional expectation (LCE) law, we are able to separate them by maximizing or minimizing a Generic Order Moment (GOM) of their mixture. This general measure includes the higher order as well as the fractional moment cases. Our results, not only confirm some of the existing results for the independent sources case but also they allow us to explore new objective functions for Dependent Component Analysis. A set of examples illustrating the consequences of our theory is presented. Also, a comparison of our GOM based algorithm, the classical FASTICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis (BCA) algorithm, is shown.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Kuruoglu, Ercan E.. Istituto di Scienza e Tecnologie dell’Informazione; Italia. Consiglio Nazionale delle Ricerche; Italia
21ª European Signal Processing Conference
Marrakech
Marruecos
European Signal Processing Society (EURASIP) - Materia
-
Blind Source Separation
Higher Order Moments
Dependent Component Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150020
Ver los metadatos del registro completo
id |
CONICETDig_5ca09fb24add0dbdae3659cfc91ada08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150020 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using generic order moments for separation of dependent sources with linear conditional expectationsCaiafa, César FedericoKuruoglu, Ercan E.Blind Source SeparationHigher Order MomentsDependent Component Analysishttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, we approach the blind separation of dependent sources based only on a set of their linear mixtures. We prove that, when the sources have a pairwise dependence characterized by the linear conditional expectation (LCE) law, we are able to separate them by maximizing or minimizing a Generic Order Moment (GOM) of their mixture. This general measure includes the higher order as well as the fractional moment cases. Our results, not only confirm some of the existing results for the independent sources case but also they allow us to explore new objective functions for Dependent Component Analysis. A set of examples illustrating the consequences of our theory is presented. Also, a comparison of our GOM based algorithm, the classical FASTICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis (BCA) algorithm, is shown.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Kuruoglu, Ercan E.. Istituto di Scienza e Tecnologie dell’Informazione; Italia. Consiglio Nazionale delle Ricerche; Italia21ª European Signal Processing ConferenceMarrakechMarruecosEuropean Signal Processing Society (EURASIP)European Association For Signal ProcessingGhogho, MounirZoubir, Abdelhak2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150020Using generic order moments for separation of dependent sources with linear conditional expectations; 21ª European Signal Processing Conference; Marrakech; Marruecos; 2013; 1-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.eurasip.org/Proceedings/Eusipco/Eusipco2013/papers/1569745029.pdfinfo:eu-repo/semantics/altIdentifier/url/https://eurasip.org/Proceedings/Eusipco/Eusipco2013/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:54Zoai:ri.conicet.gov.ar:11336/150020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:54.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using generic order moments for separation of dependent sources with linear conditional expectations |
title |
Using generic order moments for separation of dependent sources with linear conditional expectations |
spellingShingle |
Using generic order moments for separation of dependent sources with linear conditional expectations Caiafa, César Federico Blind Source Separation Higher Order Moments Dependent Component Analysis |
title_short |
Using generic order moments for separation of dependent sources with linear conditional expectations |
title_full |
Using generic order moments for separation of dependent sources with linear conditional expectations |
title_fullStr |
Using generic order moments for separation of dependent sources with linear conditional expectations |
title_full_unstemmed |
Using generic order moments for separation of dependent sources with linear conditional expectations |
title_sort |
Using generic order moments for separation of dependent sources with linear conditional expectations |
dc.creator.none.fl_str_mv |
Caiafa, César Federico Kuruoglu, Ercan E. |
author |
Caiafa, César Federico |
author_facet |
Caiafa, César Federico Kuruoglu, Ercan E. |
author_role |
author |
author2 |
Kuruoglu, Ercan E. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Ghogho, Mounir Zoubir, Abdelhak |
dc.subject.none.fl_str_mv |
Blind Source Separation Higher Order Moments Dependent Component Analysis |
topic |
Blind Source Separation Higher Order Moments Dependent Component Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, we approach the blind separation of dependent sources based only on a set of their linear mixtures. We prove that, when the sources have a pairwise dependence characterized by the linear conditional expectation (LCE) law, we are able to separate them by maximizing or minimizing a Generic Order Moment (GOM) of their mixture. This general measure includes the higher order as well as the fractional moment cases. Our results, not only confirm some of the existing results for the independent sources case but also they allow us to explore new objective functions for Dependent Component Analysis. A set of examples illustrating the consequences of our theory is presented. Also, a comparison of our GOM based algorithm, the classical FASTICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis (BCA) algorithm, is shown. Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Kuruoglu, Ercan E.. Istituto di Scienza e Tecnologie dell’Informazione; Italia. Consiglio Nazionale delle Ricerche; Italia 21ª European Signal Processing Conference Marrakech Marruecos European Signal Processing Society (EURASIP) |
description |
In this work, we approach the blind separation of dependent sources based only on a set of their linear mixtures. We prove that, when the sources have a pairwise dependence characterized by the linear conditional expectation (LCE) law, we are able to separate them by maximizing or minimizing a Generic Order Moment (GOM) of their mixture. This general measure includes the higher order as well as the fractional moment cases. Our results, not only confirm some of the existing results for the independent sources case but also they allow us to explore new objective functions for Dependent Component Analysis. A set of examples illustrating the consequences of our theory is presented. Also, a comparison of our GOM based algorithm, the classical FASTICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis (BCA) algorithm, is shown. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150020 Using generic order moments for separation of dependent sources with linear conditional expectations; 21ª European Signal Processing Conference; Marrakech; Marruecos; 2013; 1-5 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150020 |
identifier_str_mv |
Using generic order moments for separation of dependent sources with linear conditional expectations; 21ª European Signal Processing Conference; Marrakech; Marruecos; 2013; 1-5 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.eurasip.org/Proceedings/Eusipco/Eusipco2013/papers/1569745029.pdf info:eu-repo/semantics/altIdentifier/url/https://eurasip.org/Proceedings/Eusipco/Eusipco2013/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
European Association For Signal Processing |
publisher.none.fl_str_mv |
European Association For Signal Processing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083420437872640 |
score |
13.22299 |