Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3

Autores
Puszkiel, Julián Atilio; Gennari, Fabiana Cristina; Arneodo Larochette, Pierre Paul; Troiani, Horacio Esteban; Karimi, Fahim; Pistidda, Claudio; Gosalawit e Utke, Rapee; Jepsen, Julian; Jensen, Torben R.; Gundlach, Carsten; Tolkiehn, Martin; Bellosta von Colbe, José; Klassen, Thomas; Dornheim, Martin
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mge10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (300 C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between ~10 and ~100 mm and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mge10 mol%LiBH4e5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 C.
Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Centre for Materials and Coastal Research; Alemania
Fil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Karimi, Fahim. Centre for Materials and Coastal Research; Alemania
Fil: Pistidda, Claudio. Centre for Materials and Coastal Research; Alemania
Fil: Gosalawit e Utke, Rapee. Centre for Materials and Coastal Research; Alemania. Institute of Science, Suranaree University of Technology; Tailandia
Fil: Jepsen, Julian. Centre for Materials and Coastal Research; Alemania
Fil: Jensen, Torben R.. University of Aarhus; Dinamarca
Fil: Gundlach, Carsten. University of Aarhus; Dinamarca
Fil: Tolkiehn, Martin. HASYLAB at DES; Alemania
Fil: Bellosta von Colbe, José. Centre for Materials and Coastal Research; Alemania
Fil: Klassen, Thomas. Centre for Materials and Coastal Research; Alemania
Fil: Dornheim, Martin. Centre for Materials and Coastal Research; Alemania
Materia
Hydrogen Storage
Halides
Reaction Path
Milling
Magnesium Hydride
Boride
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34083

id CONICETDig_9430b4c2fa6d0dfabfb2ac964b6702a5
oai_identifier_str oai:ri.conicet.gov.ar:11336/34083
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3Puszkiel, Julián AtilioGennari, Fabiana CristinaArneodo Larochette, Pierre PaulTroiani, Horacio EstebanKarimi, FahimPistidda, ClaudioGosalawit e Utke, RapeeJepsen, JulianJensen, Torben R.Gundlach, CarstenTolkiehn, MartinBellosta von Colbe, JoséKlassen, ThomasDornheim, MartinHydrogen StorageHalidesReaction PathMillingMagnesium HydrideBoridehttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Mge10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (300 C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between ~10 and ~100 mm and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mge10 mol%LiBH4e5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 C.Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Centre for Materials and Coastal Research; AlemaniaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Karimi, Fahim. Centre for Materials and Coastal Research; AlemaniaFil: Pistidda, Claudio. Centre for Materials and Coastal Research; AlemaniaFil: Gosalawit e Utke, Rapee. Centre for Materials and Coastal Research; Alemania. Institute of Science, Suranaree University of Technology; TailandiaFil: Jepsen, Julian. Centre for Materials and Coastal Research; AlemaniaFil: Jensen, Torben R.. University of Aarhus; DinamarcaFil: Gundlach, Carsten. University of Aarhus; DinamarcaFil: Tolkiehn, Martin. HASYLAB at DES; AlemaniaFil: Bellosta von Colbe, José. Centre for Materials and Coastal Research; AlemaniaFil: Klassen, Thomas. Centre for Materials and Coastal Research; AlemaniaFil: Dornheim, Martin. Centre for Materials and Coastal Research; AlemaniaElsevier Science2014-06-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34083Puszkiel, Julián Atilio; Gennari, Fabiana Cristina; Arneodo Larochette, Pierre Paul; Troiani, Horacio Esteban; Karimi, Fahim; et al.; Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3; Elsevier Science; Journal of Power Sources; 267; 2014; 9-6-2014; 799-8110378-7753CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378775314008234info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpowsour.2014.05.130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:48Zoai:ri.conicet.gov.ar:11336/34083instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:49.085CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
title Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
spellingShingle Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
Puszkiel, Julián Atilio
Hydrogen Storage
Halides
Reaction Path
Milling
Magnesium Hydride
Boride
title_short Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
title_full Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
title_fullStr Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
title_full_unstemmed Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
title_sort Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
dc.creator.none.fl_str_mv Puszkiel, Julián Atilio
Gennari, Fabiana Cristina
Arneodo Larochette, Pierre Paul
Troiani, Horacio Esteban
Karimi, Fahim
Pistidda, Claudio
Gosalawit e Utke, Rapee
Jepsen, Julian
Jensen, Torben R.
Gundlach, Carsten
Tolkiehn, Martin
Bellosta von Colbe, José
Klassen, Thomas
Dornheim, Martin
author Puszkiel, Julián Atilio
author_facet Puszkiel, Julián Atilio
Gennari, Fabiana Cristina
Arneodo Larochette, Pierre Paul
Troiani, Horacio Esteban
Karimi, Fahim
Pistidda, Claudio
Gosalawit e Utke, Rapee
Jepsen, Julian
Jensen, Torben R.
Gundlach, Carsten
Tolkiehn, Martin
Bellosta von Colbe, José
Klassen, Thomas
Dornheim, Martin
author_role author
author2 Gennari, Fabiana Cristina
Arneodo Larochette, Pierre Paul
Troiani, Horacio Esteban
Karimi, Fahim
Pistidda, Claudio
Gosalawit e Utke, Rapee
Jepsen, Julian
Jensen, Torben R.
Gundlach, Carsten
Tolkiehn, Martin
Bellosta von Colbe, José
Klassen, Thomas
Dornheim, Martin
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Hydrogen Storage
Halides
Reaction Path
Milling
Magnesium Hydride
Boride
topic Hydrogen Storage
Halides
Reaction Path
Milling
Magnesium Hydride
Boride
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Mge10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (300 C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between ~10 and ~100 mm and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mge10 mol%LiBH4e5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 C.
Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Centre for Materials and Coastal Research; Alemania
Fil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Karimi, Fahim. Centre for Materials and Coastal Research; Alemania
Fil: Pistidda, Claudio. Centre for Materials and Coastal Research; Alemania
Fil: Gosalawit e Utke, Rapee. Centre for Materials and Coastal Research; Alemania. Institute of Science, Suranaree University of Technology; Tailandia
Fil: Jepsen, Julian. Centre for Materials and Coastal Research; Alemania
Fil: Jensen, Torben R.. University of Aarhus; Dinamarca
Fil: Gundlach, Carsten. University of Aarhus; Dinamarca
Fil: Tolkiehn, Martin. HASYLAB at DES; Alemania
Fil: Bellosta von Colbe, José. Centre for Materials and Coastal Research; Alemania
Fil: Klassen, Thomas. Centre for Materials and Coastal Research; Alemania
Fil: Dornheim, Martin. Centre for Materials and Coastal Research; Alemania
description Mge10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (300 C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between ~10 and ~100 mm and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mge10 mol%LiBH4e5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 C.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34083
Puszkiel, Julián Atilio; Gennari, Fabiana Cristina; Arneodo Larochette, Pierre Paul; Troiani, Horacio Esteban; Karimi, Fahim; et al.; Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3; Elsevier Science; Journal of Power Sources; 267; 2014; 9-6-2014; 799-811
0378-7753
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34083
identifier_str_mv Puszkiel, Julián Atilio; Gennari, Fabiana Cristina; Arneodo Larochette, Pierre Paul; Troiani, Horacio Esteban; Karimi, Fahim; et al.; Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3; Elsevier Science; Journal of Power Sources; 267; 2014; 9-6-2014; 799-811
0378-7753
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378775314008234
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpowsour.2014.05.130
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613837082329088
score 13.070432