Efficient non homogeneous CFAR processing
- Autores
- Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing.
Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
NEURAL NETWORKS
CFAR
CLUTTER
DETECTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103983
Ver los metadatos del registro completo
id |
CONICETDig_933fef445de2e6e3da88a8f302005cd9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103983 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Efficient non homogeneous CFAR processingGálvez, Nélida BeatrizCousseau, Juan EdmundoPasciaroni, Jose LuisAgamennoni, Osvaldo EnriqueNEURAL NETWORKSCFARCLUTTERDETECTIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing.Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPlanta Piloto de Ingeniería Química2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103983Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Efficient non homogeneous CFAR processing; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 1; 1-2011; 1-90327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i41_01.htminfo:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v4101/Vol41_01_01.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:40Zoai:ri.conicet.gov.ar:11336/103983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:40.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Efficient non homogeneous CFAR processing |
title |
Efficient non homogeneous CFAR processing |
spellingShingle |
Efficient non homogeneous CFAR processing Gálvez, Nélida Beatriz NEURAL NETWORKS CFAR CLUTTER DETECTION |
title_short |
Efficient non homogeneous CFAR processing |
title_full |
Efficient non homogeneous CFAR processing |
title_fullStr |
Efficient non homogeneous CFAR processing |
title_full_unstemmed |
Efficient non homogeneous CFAR processing |
title_sort |
Efficient non homogeneous CFAR processing |
dc.creator.none.fl_str_mv |
Gálvez, Nélida Beatriz Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author |
Gálvez, Nélida Beatriz |
author_facet |
Gálvez, Nélida Beatriz Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author_role |
author |
author2 |
Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NEURAL NETWORKS CFAR CLUTTER DETECTION |
topic |
NEURAL NETWORKS CFAR CLUTTER DETECTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing. Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103983 Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Efficient non homogeneous CFAR processing; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 1; 1-2011; 1-9 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103983 |
identifier_str_mv |
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Efficient non homogeneous CFAR processing; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 1; 1-2011; 1-9 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i41_01.htm info:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v4101/Vol41_01_01.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269594314604544 |
score |
12.885934 |