Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations

Autores
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.
Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Materia
CFAR
Neural Networks
Clutter
Detection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/243724

id CONICETDig_53a13122d82901316afed4888a4e4394
oai_identifier_str oai:ri.conicet.gov.ar:11336/243724
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target SituationsGálvez, Nélida BeatrizCousseau, Juan EdmundoPasciaroni, Jose LuisAgamennoni, Osvaldo EnriqueCFARNeural NetworksClutterDetectionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPlanta Piloto de Ingeniería Química2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243724Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-3500327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000400003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:28Zoai:ri.conicet.gov.ar:11336/243724instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:28.392CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
title Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
spellingShingle Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
Gálvez, Nélida Beatriz
CFAR
Neural Networks
Clutter
Detection
title_short Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
title_full Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
title_fullStr Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
title_full_unstemmed Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
title_sort Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
dc.creator.none.fl_str_mv Gálvez, Nélida Beatriz
Cousseau, Juan Edmundo
Pasciaroni, Jose Luis
Agamennoni, Osvaldo Enrique
author Gálvez, Nélida Beatriz
author_facet Gálvez, Nélida Beatriz
Cousseau, Juan Edmundo
Pasciaroni, Jose Luis
Agamennoni, Osvaldo Enrique
author_role author
author2 Cousseau, Juan Edmundo
Pasciaroni, Jose Luis
Agamennoni, Osvaldo Enrique
author2_role author
author
author
dc.subject.none.fl_str_mv CFAR
Neural Networks
Clutter
Detection
topic CFAR
Neural Networks
Clutter
Detection
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.
Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
description The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/243724
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-350
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/243724
identifier_str_mv Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-350
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000400003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614241427914752
score 13.070432