Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations
- Autores
- Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.
Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina
Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
CFAR
Neural Networks
Clutter
Detection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243724
Ver los metadatos del registro completo
id |
CONICETDig_53a13122d82901316afed4888a4e4394 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243724 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target SituationsGálvez, Nélida BeatrizCousseau, Juan EdmundoPasciaroni, Jose LuisAgamennoni, Osvaldo EnriqueCFARNeural NetworksClutterDetectionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; ArgentinaFil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPlanta Piloto de Ingeniería Química2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243724Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-3500327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000400003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:28Zoai:ri.conicet.gov.ar:11336/243724instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:28.392CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
title |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
spellingShingle |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations Gálvez, Nélida Beatriz CFAR Neural Networks Clutter Detection |
title_short |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
title_full |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
title_fullStr |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
title_full_unstemmed |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
title_sort |
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations |
dc.creator.none.fl_str_mv |
Gálvez, Nélida Beatriz Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author |
Gálvez, Nélida Beatriz |
author_facet |
Gálvez, Nélida Beatriz Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author_role |
author |
author2 |
Cousseau, Juan Edmundo Pasciaroni, Jose Luis Agamennoni, Osvaldo Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CFAR Neural Networks Clutter Detection |
topic |
CFAR Neural Networks Clutter Detection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations. Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243724 Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-350 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243724 |
identifier_str_mv |
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-350 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000400003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614241427914752 |
score |
13.070432 |