Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images

Autores
Villar, Sebastián; Menna, Bruno V.; Torcida, Sebastián; Acosta, Gerardo G.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, a new approach to improve the algorithmic efficiency of the order statistic-constant false alarm rate (OSCFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OSCFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allow that OS-CFAR technique to be more robust to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OSCFAR 2D on-line computation with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.
Materia
Ingenierías y Tecnologías
Image denoising
Object detection
Radar clutter
Probability
Radar imaging
Radar detection
Statistical analysis
Sorting
Optimisation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/10572

id CICBA_ba579657b1fa98fe8a388e29e0361a33
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/10572
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic imagesVillar, SebastiánMenna, Bruno V.Torcida, SebastiánAcosta, Gerardo G.Ingenierías y TecnologíasImage denoisingObject detectionRadar clutterProbabilityRadar imagingRadar detectionStatistical analysisSortingOptimisationIn this work, a new approach to improve the algorithmic efficiency of the order statistic-constant false alarm rate (OSCFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OSCFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allow that OS-CFAR technique to be more robust to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OSCFAR 2D on-line computation with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/10572enginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-rsn.2018.5619info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:19Zoai:digital.cic.gba.gob.ar:11746/10572Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:20.161CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
title Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
spellingShingle Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
Villar, Sebastián
Ingenierías y Tecnologías
Image denoising
Object detection
Radar clutter
Probability
Radar imaging
Radar detection
Statistical analysis
Sorting
Optimisation
title_short Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
title_full Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
title_fullStr Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
title_full_unstemmed Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
title_sort Efficient approach for OS-CFAR 2D technique using distributive histograms and breakdown point optimal concept applied to acoustic images
dc.creator.none.fl_str_mv Villar, Sebastián
Menna, Bruno V.
Torcida, Sebastián
Acosta, Gerardo G.
author Villar, Sebastián
author_facet Villar, Sebastián
Menna, Bruno V.
Torcida, Sebastián
Acosta, Gerardo G.
author_role author
author2 Menna, Bruno V.
Torcida, Sebastián
Acosta, Gerardo G.
author2_role author
author
author
dc.subject.none.fl_str_mv Ingenierías y Tecnologías
Image denoising
Object detection
Radar clutter
Probability
Radar imaging
Radar detection
Statistical analysis
Sorting
Optimisation
topic Ingenierías y Tecnologías
Image denoising
Object detection
Radar clutter
Probability
Radar imaging
Radar detection
Statistical analysis
Sorting
Optimisation
dc.description.none.fl_txt_mv In this work, a new approach to improve the algorithmic efficiency of the order statistic-constant false alarm rate (OSCFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OSCFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allow that OS-CFAR technique to be more robust to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OSCFAR 2D on-line computation with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.
description In this work, a new approach to improve the algorithmic efficiency of the order statistic-constant false alarm rate (OSCFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OSCFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allow that OS-CFAR technique to be more robust to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OSCFAR 2D on-line computation with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/10572
url https://digital.cic.gba.gob.ar/handle/11746/10572
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-rsn.2018.5619
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842974757725667328
score 12.993085